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Chapter 1

A Coupled Incremental Damage and
Plasticity Theory for Metal Matrix
Composites

1.1 Introduction

A coupled incremental damage and plasticity theory for metal matrix composites is intro-
duced here. This coupling occurs only in the matrix since the fibers are assumed to be
only elastic. This allows damage to be path dependent either on the stress history or the
thermodynamic force conjugate to damage. This is achieved through the use of incremental
damage tensors. Damage and plastic deformations are incorporated in the proposed model
that is used for the analysis of fiber-reinforced metal matrix composite materials. The pro-
posed micro-mechanical damage relations are used for each of the matrix and the fiber. This
is coupled with the interfacial damage between the matrix and the fiber exclusively. The
damage relations are linked to the overall response through a certain homogenization proce-
dure. Two local incremental damage tensors m™ and m/ are used where m™ accounts for
the damage in the ductile matrix such as nucleation and growth of voids, while m/ reflects
the incremental damage in the fibers such as fracture. An additional incremental tensor m?
is incorporated in the overall formulation that represents interfacial damage between the
matrix and the fiber. An overall incremental damage tensor, m, is introduced that accounts
for all these separate damage tensors m™, m/ and m®.

For the undamaged matrix material, a von Mises type yield criterion with an associated
flow rule, and Ziegler-Prager kinematic hardening rule are used. However, the resulting over-
all yield function for the damaged composite is anisotropic. The overall kinematic hardening
rule for the damaged composite system is a combination of the generalized Ziegler-Prager
rule and the Phillips-type rule . The elasto-plastic stiffness tensor is derived for the damaged
composite.

Evaluation of the material parameters is done for the case of isotropic damage.




1.2 Formulation of the Incremental Damage Tensor

1.2.1 Total Damage Tensor M

In order to obtain the incremental damage tensor ™ the concept of effective stress as first
used by Kachanov (1958)[1] is presented for the one dimensional stress state. The incremental
relations are subsequently derived using Kachanov’s concept. Cj in this work refers to the
initial undeformed and undamaged configuration of the body and C is the corresponding
configuration of the body that is both deformed and damaged after a set of external agencies
act on it. The state of the body after it has only deformed without damage (by removing the
damage fictitiously) is denoted by C. This is presented by Voyiadjis and Kattan (1992a)[2].

A linear transformation between the Cauchy stress in the configuration C, and the effec-
tive Cauchy stress in the configuration C is assumed such that

GA = oA (1.1)
or
o = (1-9¢) o (1.2)
where
A-A
¢ = — (1.3)

In the above equations A and A are the areas of crossections of the axially loaded bar in
the C and C configurations respectively. ¢ is a measure of damage. Making use of equation
(1.2) an incremental formulation for damage is obtained such that

6 = (1-¢)6+(1—¢) %00 (1.4)

The concept of effective stress as generalized by Murakami (1988)[3] is given through the
generalization of equation (1.2) such that

c = M:o : (1.5)
or
g =M":0" r=m,f (1.6)

for the individual constituents of the matrix and the fiber respectively. where M is the
fourth-order damage effect tensor and is a function of the second order symmetric tensor ¢.
The effective Cauchy stress tensor, &, need not be symmetric or frame invariant. Once
the effective Cauchy stress, &, is symmetrized, it can be shown that it satisfies the frame
invariance principle (Voyiadjis and Kattan, 1992a)[2].
The fourth order tensor M can be represented by a 6X6 matrix as a function of (I, — ¢)
in the form (Murakami)[3]

[M] = [M(I, - ¢)] (1.7)




where I is the second-order identity tensor. Murakami [3] has shown that ¢ is symmetric
which is the generalization of the scalar variable ¢. The stress tensor &, in conjunction with
the matrix form of M given by equation (1.7), is represented by a vector given by

(5] = [611, 522, T3, F12, T23, T31) (1.8)

The symmetrized effective Cauchy stress tensor & used here is ex'pressed by (Lee, et al.,
1986)[4]

1 -
5 = Slow(de — dr) ™ + (8u = da) ous) (1.9)
which is a second rank tensorial generalization of the scalar equation (1.2)
The stress given by equation (1.9) is frame-independent. Utilizing the symmetrization
procedure outlined by equation (1.9) the corresponding 6X6 matrix form of tensor M is
given by Voyiadjis and Kattan (1992a)[2] as follows:

[ Qwgowss — 202, 0 0
0 w1 w33 — 202, 0
(M] = 1 0 0 2wyywag — 203, (1.10)
2V | ¢13das + hrawss  Pr13das + Prawss 0
0 P12013 + Pazwnr Pr2¢13 + Pazwin
| $12023 + P13war 0 12023 + P13wa2
213023 + 2¢12w33 0 2¢12¢23 + 2¢13w32 |
2¢13¢23 + 2¢12w33 212013 + 2¢23w11 0
0 2¢12013 + 2¢23w2 12013 + P13wny
woawss + wiiwss — P33 — P24 D12¢P23 + P13waz Pr2¢23 + P23win
12023 + P13w2e w11ws3 + wiiwsz — ¢%3 - ¢’%2 13023 + P12was
$12613 + P23wi1 h13P23 + Prowss Woawss + Wi — ¢§3 - fg i

where V Is given as follows

V = wwawss — Gawin — Grawar — $lawss — 201202313 (1.11)

The notation w;; is used here to denote d;; — ¢;;. The physical characterization of damage,
¢ is presented in section 4.

1.2.2 Incremental Damage Tensor m

The incremental relation of equation (1.2) is given by the following expression

ds = (1—-¢) o+ (1—¢)%ddo (1.12)




Equation (1.12) may also be obtained using Figure 1.1. In the local sub-configurations of
the matrix, C™, and fiber, C/, equation (1.12) isexpressed as follows

d6" = (1 —¢")"do" + (1 — ¢)2d¢" 0" (1.13)

for r = m, f. The generalization of the concept of the incremental relation given by equation
(1.12) is obtained by introducing the incremental relation of equation (1.6) such that

dég" = M’ :do" +dM’ : o (1.14)
or
& = M :6"+M :0" (1.15)

The superposed dot indicates material time differentiation. In order for equation (1.15) to
. . s .

be homogeneous in time of order one (i.e. stress-rate independent) M should be a linear

function of &". It will be demonstrated in this work that the following relation exists

o r

¢ = X :0 (1.16)
Since M is a function of ¢", therefore
‘rr aMir‘kl iy
ikl = Bqﬁ"J g (1.17)
rq
Consequently the resulting relation between M’ and " Is such that
) oM.
r ikl xrr . r Q
ikl = ” rs7 (11b)
2 a¢pq pq Pq
or
M = TI:6" (1.19)

where I'" is a sixth order tensor.
Equation (1.19) may also be written in terms of the strain rate by making use of the

fourth order elasto-plastic stiffness tensor D", such that
A o

M =TI :D:¢ (1.20)

Making use of equation (1.19) in equation (1.15) one obtains the incremental damage ex-
pression such that

& = m:o (1.21)
where
m:jkl = M;jk1+F:quk10';q (122)

The fourth order tensor m” could be interpreted as the incremental damage tensor as opposed
to the total damage tensor M". During elastic loading and unloading, equation (1.21) could
be substituted by equation (1.5).




1.3 Relation Between the Cumulative Damage and the
Local Damage Tensors

1.3.1 Basic Assumptions

The metal matrix composite system used in this work is restricted to small deformations
with infinitesimal strains. The material consists of an elasto-plastic ductile metal matrix
reinforced by elastic aligned continuous fibers. Cy denotes the initial undeformed and un-
damaged configuration of a single lamina while CJ* and C{ are the initial matrix and fiber
sub-configurations for the single lamina respectively. The composite material is assumed to
undergo elasto-plastic deformation and damage due to the applied loads. The corresponding
resulting overall configuration for a single lamina is denoted by C while the respective matrix
and fiber local sub-configurations for a single lamina are denoted by C™ and C/ respectively.
Damage is expressed by generalizing the concept proposed by Kachanov (1958) [1] whereby
two kinds of fictitious configurations C and C of the composite system at the lamina level
are considered as shown in Figure 1.2. Configuration C is obtained from C by removing
the different types of damages that the single lamina has undergone due to the applied
stresses. However, configuration C is obtained from C for a single lamina by removing only
the interfacial damage between the matrix and the fiber. The total or incremental stress
at configuration C is converted to the respective total or incremental stress at the fictitious
configuration C through the damage tensors m or M respectively as indicated in Figure
1.2. Configuration C is termed full effective configuration, while C is the partial effective
configuration.

The coupled formulation of the plastic flow and damage propagation seems to be impossi-
ble, due to the presence of the two different dissipative mechanisms that influence each other.
This could be indicated by the fact that the position of the slip planes affects the orientation
of nucleated micro-cracks. However, one can assume that the energy dissipated in the yield-
ing and damaging processes be independent of each other and apply a phenomenological
model of interaction. In this work use is made of the concept of effective stress (Lemaitre,
1971)[5]. Making use of a fictitious undamaged system, the dissipation energy due to plastic
flow in this undamaged system is assumed to be equal to the dissipation energy due to plastic
flow in the real damaged system.

The main feature of the present approach is that local effects of damages are considered
at both the single lamina level as well as the laminate level. The damages at the single
lamina level are described separately by the damage in the matrix, damage in the fiber, and
interfacial damage between the matrix and the fiber. This is schematically indicated in Figure
1.2 where the undamaged matrix and fiber configurations C™ and C7, respectively, are
transformed to their respective damaged configurations C™ and C/ through the incremental
fourth order damage tensors m™ and m’/. m™ reflects damage in the matrix only and
accordingly m/ reflects damage in fibers only. These configurations could also be transformed
through the fourth order damage tensors M™ and M/ as shown in Figure 1.2. However,
as will be demonstrated later the local incremental damage tensors are better suited for use
in the formulation of the constitutive equation of the damaged material behavior. One can
also easily express the overall incremental damage tensor m in terms of its local components




m™, m/ and m?. Furthermore, equations are considerably simplified and it also yields a
more efficient computational solution for the boundary value problems.

Damage tensors m™ and M™ reflect damage in matrix only and accordingly m/ and
M/ reflect damage in fibers only. Following this local damage description, the local-overall
relations are used to transfer the local damage effects to the whole composite system in con-
figuration C as shown in Figure 1.2. This is accomplished through the stress concentration
tensors B™ and B of the matrix and fibers, respectively.

The effect of interfacial damage between the fibers and the matrix is represented by a
serial incremental transformation m¢ (or equivalently M%) and transforms the configuration
C to the final damaged configuration C. Referring to Figure 1.2, the local nature of damage
of this approach for the single lamina is clear, and different damages are separately isolated.

Referring to Figure 1.2 this approach is summarized in the following three steps. The
incremental local damage tensors ™ and m/ are first applied to the local effective configura-
tions C™ and C/, respectively. This is followed by applying the damage stress concentration
factors B™ and Bf to the local partial effective configurations C™ and C/ in order to ob-
tain the overall partial effective configuration C. Finally, the incremental interfacial damage
tensor m? is applied to the overall partial effective configuration C in order to obtain the
overall damaged configuration C of a single lamina.

The tensor ™™ encompasses all the pertinent damage related to the matrix while the
tensor m/ reflects the damage pertinent to the fibers (Voyiadjis and Kattan, 1993)[6]. How-
ever, the interfacial damage tensor M is related to the interfacial damage variable ¢°.
An interfacial damage variable can be defined through the use of an RVE (Representative
Volume Element) as indicated by Voyiadjis and Park (1995)[7]

d S-S
¢ = 3 (1.23)
where S is the total interfacial length, between the fiber and the matrix and S is the effective
(net) resisting length corresponding to the total interfacial length in contact.

1.3.2 Theoretical Formulation of m

An incremental overall damage tensor m is introduced for the whole composite system as
shown in Figure 1.1. This tensor is defined similarly to the definitions of m™, m/ and m*
such that

(1.24)

Qi
Il
3
Q

or
do = m:do (1.25)

m reflects all types of damages that the composite undergoes including the damage due
to the interaction between the matrix and fibers. Similarly a tensor M is used for the total
stresses (Voyiadjis and Kattan, 1993 [6], Kattan and Voyiadjis (1993b) [8]) as indicated by
equation (1.5). The matrix representation for M was explicitly derived by expressing the




stress in vector form. The tensor M as well as tensor M can be shown to be symmetric. It
follows from equation (1.22) that the incremental damage tensor m is also symmetric. This
property will be used extensively in the derivation that follows. The same holds true for
tensors m™, m’ and m?.

Similar to tensor M ¢, both tensors M™ and M/ could be represented in terms of second
order tensors ¢™ and ¢’ respectively as shown in Voyiadjis and Kattan (1993)[6] and Kattan
and Voyiadjis (1993b)[8]. It therefore follows that m?, m™ and m/, could be represented

in terms of tensors éd, ¢ and d)f respectively, ¢%, ¢™ and ¢’ respectively and o. The
overall effective Cauchy stress & is related to the local effective Cauchy stress ™ and &/ by
making use of the micro-mechanical model proposed by Dvorak and Bahei-El-Din (1979)[9]
such that

& = o™ +ee’ (1.26)

where ¢™ and ¢/ are the effective matrix and fiber volume fractions, respectively. The
effective matrix Cauchy stress rate and the corresponding fiber Cauchy stress rate are defined
as follows:

" = mria (1.27)
and
# = mf.§ (1.28)

where ™ and &’ are the partial effective stress rates in the C™ and C/ configurations,
respectively. These stresses are termed partial effective since the interfacial damage has not
yet been incorporated into the formulation. Referring to Figure 1.2 and making use of the
partial stress concentrations B and Bf, the corresponding partial effective matrix Cauchy
stress rate and corresponding fiber Cauchy stress rate are given by the following equations:

rm = m

6 = B":6 (1.29)
and
& = B .é » (1.30)

The partial effective overall composite Cauchy stress rate & is defined as
o = m':¢& (1.31)

in terms of the Cauchy stress rate . One can also define the incremental fourth order
damage tensor m such that

G = m:o (1.32)

Making use of relations (1.27) and (1.28) in equation (1.26) one obtains the following

expression:

(1.33)




Substituting into equation (1.33) for the partial effective matrix and fiber stress rates
from relations (1.29) and (1.30) respectively and making use of equation (1.31) the resulting
equation is given as follows:

& = ("m™:B" +&m/ B'y:m: o (1.34)

Comparing equation (1.34) with expression (1.21) one concludes that the following rela-
tion is obtained between the overall incremental damage tensor m and its components m™,
m/ and m%:

m = (@m™:B" +&m/ :Bf) : m? (1.35)

This expression defines the cumulative incremental damage of the composite as a function
of its local components.

1.4 Experimental Determination of Damage

Damage is characterized here as micro-cracks. However, any other type of damage could be
included in this formulation. The physical interpretation of the damage tensor ¢ is also
presented here. The tensor ¢ is evaluated experimentally for two different types of laminate
layups.For each case ¢™ and ¢’ is computed independently.

Matrix (Ti-14A1-21Nb) | Fiber (SiC)
Modulus 8 x 10 M Pa 41 x 10* M Pa
Poisson’s Ratio 0.30 0.22
Initial Volume Fraction 0.65 0.35
Yielding Stress & 360 M Pa
Kinematic hardening Parameter b 90 M Pa

Table 1.1: Material Properties

Voyiadjis and Venson (1995)[10] presented experimental investigations and procedures
for the determination of damage for the macro- and the micro-analysis of a SiC-Titanium
Aluminide metal matrix composite with material properties indicated in Table 1.1. Uniaxial
tension tests are performed in the work on laminate specimens of two different layups. Flat
dogbone shaped specimens are fabricated from each of the layups. For each of the different
layups, specimens are loaded to various load levels ranging from 70% of the load rupture to
the rupture load at room temperature. Making use of this experimental procedure, damage
evolution is experimentally evaluated through a quantitative micro-analysis technique. This
analysis is performed using scanning electron microscopy on three mutually perpendicular
representative cross-sections from a representative volume element defined for the theoretical
development of damage evolution.

The damage tensor proposed by Voyiadjis and Venson(1995)[10] is defined for a general
state of loading based upon the experimental observations of crack densities on tree mutually




perpendicular cross-sections of the specimens. The damage tensors, ¢, ™ and ¢? are
defined as a second-rank tensor in the form of

¢ = pTRp (1.36)
and in the matrix form as follows
PzPz PPy PzP:
[¢r] = | PyPz PyPy  PyP: (1'37)
PzPx  PzPy PzP:
Where p; for i = z,y, z is the normalized crack density on a cross-section whose normal is

along the i-axis.The crack density on the representative volume element for the i** cross-
section is calculated as follows:

5 = 2 (1.38)
mp*
and
b (1.39)
pi = Ai 4

In the above expressions, /; is the total length of the cracks on the i cross-sectional area
for each constituents, m is a normalization factor chosen so that the values of the damage
variable ¢" fall within the expected range 0 < ¢, < 1, and p” is defined as follows

p* = \/p?ﬁma: + p?]mar + pzmaz (1'40)

Where pz,...r Pymar a01d ps,... are the values of [;/A; at the maximum load (rupture) on the
respective cross-section.

The damage tensor obtained experimentally from equation (1.36) is used in the consti-
tutive equations in order to predict the mechanical behavior of the composite system. This
procedure may be used independently to quantify each of the damages in the matrix and
the fiber. Use is made of the scanning electron microscope in order to quantify the damage
tensor ¢” expressed by equations (1.36) and (1.37). This is performed at various load levels -
ranging from rupture load down to 70 % of the rupture at room temperature (Voyiadjis
and Venson, 1995)[10]. A more extensive investigation would be to start from the onset
of load all the way to rupture. However, the damage tensor ¢" determined experimentally
by Voyiadjis and Venson (1995)[10] is between 70 % and of the rupture load to the final
rupture for two types of laminate layups (0/90), and (£45); each consisting of four plies.
These layups are examinated both numerically and experimentally (Voyiadjis and Venson,
1995[10]). Since in order to quantify damage, the specimen has to be sectioned, consequently
different specimens are used to quantify damage at various percentages of the rupture load.

The crack densities p; measured experimentally by the procedure outlined above are
shown in Tables 1.2 and 1.3 for the (0/90); and (£45); layups, respectively. The normalized
values p; are calculated using the values of p; obtained previously for each layups. The results




are then used to calculate the damage variable @" based on expression (1.37). Damage strain
curves are consequently generated for each layups orientation. These damage values can then
be used in the constitutive model to accurately predict the mechanical behavior of metal
matrix composites. For a more complete discussion on the physical characterization the

reader is referred to a paper by Voyiadjis and Venson (1995){10].

%Load | %Strain | p* x 107* | pf x 107* | p x 107* | p/ x 107
mm/mm? | mm/mm? | mm/mm? | mm/mm?
70 .3182 0.00 41.82 0.00 3.41
75 4487 0.00 70.32 0.00 36.40
80 4611 0.00 100.77 — —
85 .5202 0.00 106.24 0.00 56.43
90 .5808 0.00 126.68 a7 66.94

Table 1.2: Local Crack densities for (0/90)s laminate

%Load | %Strain | p7 x 107% | pf x 107* | p™ x 107* | pf x 10~
70 2414 0.00 49.23 — —
75 2779 0.00 49.32 0.00 42.44
80 4324 0.00 51.84 0.00 101.29
85 .5268 0.00 52.99 0.00 117.01
90 5729 0.00 56.67 48.98 97.61

Table 1.3: Local Crack densities for (+45)s laminate

1.5 Damage Criterion

In this work it is assumed that matrix undergoes ductile damage while the fiber undergoes
brittle damage.The mechanisms of interfacial damage are dependent on the fiber direction. It
is clear that the damage mechanism for each of the constituents of the composite materials
is different from the other and therefore one single damage micro-mechanism can not be
considered for the three types of damages outlined here for a single lamina. Each type of
damage evolution is considered separately.

In order to obtain a damage criterion for non-proportional loading, the anisotropy of
damage increase (hardening) must be considered. The anisotropic damage criterion used here
is expressed in terms of a tensorial hardening parameter, h (Voyiadjis and Park, 1995)[7].

G=gY,K)=0 , r=m,fd (1.41)
or

g =P =) Yo —v)—-1=0 (1.42)
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The generalized thermodynamic backsterss force 4], which is a concequence of crack inter-
actions is given by

v = Cé (1.43)
where ¢” is a material constant and

Pl = hihy (1.44)

1

Here Y is a generalized thermodynamic force conjugate to the damage tensor ¢ for each
of the damage associated with the matrix, fiber and debonding. The hardening tensor h" is
expressed as

R o= W4V (1.45)

Tensors ™ and V" (which represents the initial threshold against damage for the material)
are defined for orthotropic materials(Voyiadjis and Park, 1995)[7] in terms of the generalized
Lamé constants A7, A}, A} and v}, vy, v5 as follows

N (A—)g 0 0
u= o xu(%

0 0o xm(8)°

(1.46)

[SEIAR

\—/
o
(]

and
Atvt? 0 0
Vi=| 0 Mu? 0 (1.47)
0 0 Aju5?

where " is a scalar representing the total damage energy and given by

t
”=/Y~am , r=m,f,d (1.48)
0

For a simpler damage model 17 may be eliminated by setting it equal to unity and seting
£ = &, = £;.This causes less flexibility in the behavior of the damage. However, this allows
the reduction of material parameters by five.

The generalized Lamé constants in this work are defined as follows

N=E(1-¢)? , r=m,f,d and i=1,2,3 (1.49)

where EI are the effective moduli of elasticity along the principal axes defined along the
direction of the fibers and transversely to them.
The damaging state is any state that satisfies g = 0. The four states are outlined below

g <0, (elastic unloading) (1.50a)
g =0, g—;;; :Y <0 (elastic unloading) (1.50b)
g =0, -gig;; Y =0 (neutral loading) (1.50¢)
g =0, 58%; Y >0 (loading from a damaging state) (1.50d)
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1.6 Damage Evolution

1.6.1 Matrix Damage and Plasticity Evolution

The two energy dissipative mechanisms of plasticity and damage are exhibited by the metal
matrix. The two energy dissipative behaviors influence each other. As out lined later in this
section the plastic strain rate and the damage rate are each functions of the stress and the
conjugate force to damage. Consequently, the energies dissipated due to damage and that
due to plasticity are interdependent to each other.

The total power of dissipation of the matrix is given by

o™ = ™40 (1.51)

where II™ is the plastic dissipation and II™? is the corresponding damage dissipation. The
plastic dissipation is expressed as

oem” »m

nm = 6™:é¢ ,+&m:[§ (1.52)

The second term of expression (1.52) is associated with kinematic hardening. The associated
damage dissipation is given by

™ = Y™:¢" + K™i™ + (™ (1.53)

The term K™K™ is associated with isotropic damage hardening. The third term in expres-
sion (1.53) is associated with kinematic hardening. As mentioned previously, it relates to
interaction of cracks.

Utilizing the calculus of functions of several variables, one introduces two Lagrange mul-
tipliers AT* and AT in order to form the function 2™ such that

Q" = 0™ — A" f™ — Arg™ (1.54)

In equation (1.54), f™(6™,&™) is the plastic yield function of the matrix and &™ is the
back-stress tensor. Since Y™ is a function of @™ and o™ (as it will be shown in (1.84)), the
yield function may be expressed as follows f™(Y™,@™,&™). For non-associative plasticity
the yield function f™ should be replaced by the corresponding plastic potential function.
The damage potential g™ is a function of Y™ and «™ or 6™, ¢™ and k™ such that

" =g"(@",¢",k")=0 or g"=g"(Y",k")=0 (1.55)

In order to extremize the function 2™, one uses the necessary conditions

oam
and
onm
ym = 0 (1.57)
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Equations (1.56) and (1.57) yield the corresponding plastic stain rate and damage rate
evolution equations respectively, which are coupled as shown below

am” m afm ag

e = Ar_o 55 +Ar = 56 (1.58)
and

sm - afm agm

Equation (1.59) gives the increment of the damage from the damage potential g™ and the
yield function f™.

It is clear that coupling exists between the plastic strain rate and the damage rate in the
matrix.

Using the consistency condition for the matrix yield function fm and the matrix damage
g™ such that

F=o0 (1.60a)
or
afm m afm om afm em 3
ez togmi® tagmi& =0 (1.60b)
and
g =0 (1.61a)
or
Og™  em 09" im 09" .o _

Expressions (1.61) state that after an increment of damage, the volume element again
must be in a damaging state. Making use of expression (1.48) in its incremental form

am

=Y":¢ (1.62)
one can then express equation (1.61b) as follows

ag *m

09"  gm 09" m Fo YT = 0 (1.63)

3" % tToap

A Prager-Zigler kinematic hardening evolution law is used in the damaged configuration cm
such that

& = "™ -am) (1.64)



where i is defined by Voyiadjis and Park (1995)[7] such that

i =3 b A" (1.65)
and b is the kinematic hardening parameter for the matrix. The corresponding yield fuction
is given by

= %(&m—am) (™ — &™) =57 =0 (1.66)

from this equations one can conclude

afm em =
e m_&™ 1.67
o = sem-an) (167)
and therefore
cm Am afm

Substituting for ¢~ from equation (1.59) into equations (1.60b) and (1.63) and substi-
tuting & from equation (1.68) into equation (1.60b) one obtains the following linear system

aﬁg% X _ | e a2 AT 1.69
afm | *_m - a a Am ( ° )
Ty 21 Q22 2
where the components a;; are scalars given by
3 agm Bgm . afm
ayy = (W afi_mY ) . '5?—"—1 (170&)
_ agm agm my agm
aig = W + 8/{_"1Y ) . aYm (170b)
B 6f~m . afm afm ' af"m
=557 Gy7 t 557 ga0) (1.70¢)
af™ g™
- . .70d
a2 (aqu 8Ym) (1.70d)
Resolving the linear system (1.69) one obtains
AT 1 a —a LY
A'lﬂ = < _22 12 0, m (1.71)
2 a1 dan P il Y
where
A = ajiloy — 12021 (172)

Substituting A™ and AT from equation (1.71) into equation (1.59) one obtains
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™ = §":6 +R™:Y (1.73)
where
1 agm afm agm .
= === — 1.74
5 Ao ngyw T gy (1.74)
and
m 1 af afm ag™
R AoYy™ (—alzaym + a”aY’”) (1.75)
Since Y™ is a function of &™ and ¢™ one can write
ym = O gm [OYT g (1.76)

97 7 Top

substituting ¥ from equation (1.76) into equation (1.73) one obtains the damage evolution
equation in the matrix such that

o™ = X" o (1.77)
where X™ is a fourth order tensor originally defined in section 2 by equation (1.16). The
explicit form of X™ is given below

aYy™ aym™

Xm = (Sm+Rm%—,,‘n~)(I4—Rm'é'F)_l (178)

where I, is the fourth order identity tensor expressed as follows
1
Lijmw = 5(51'1'5“ + 6udjk) (1.79)

The thermodynamic force associated with the matrix damage is obtained by using the
enthalpy of the damaged matrix as follows
1. ~ —m - ~m
Vmh(e™, ¢™) = 3 o":E (¢™):6™ —-d(a™) (1.80)
where ®(&™) is the specific energy due to kinematic hardening, and E™ is the elastic stiffness
of the damaged matrix. Using equation (1.80) the thermodynamic force of the matrix is given

by

ovm
Y® = —— 1.81
55 (181)
Making use of the energy equivalence principle (Cordebois and Sidoroff, 1982)[11]
—e,rlr:zstic = ~evl‘rtlzstic (182)
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one obtains a relation between the damaged elastic compliance, E™" for the matrix and
the corresponding undamaged elastic compliance E™" such that (Voyiadjis and Kattan,
1992a)[2]

E(¢™) = M™(¢™):ET": M™(¢™) (1.83)

Through the use of equations (1.80) and (1.81), the thermodynamic force for the matrix is
obtained explicitly such that

m
a abed

ogr

m o __ ~m [r—-m m ~m
Yzj - (Uchabpq qulakl)

(1.84)

1.6.2 Fiber Damage Evolution

For fibers the gradual degradation of the elastic stiffness is caused only through damage and
no plastic dissipation occurs. The associated damage dissipation of the fiber is given by

==y’ ¢ + K&’ (1.85)
and
I’ = o0 (1.86)
Since the plastic dissipation is zero. The function Q/ for the fiber is given by
Qf = 1 —A/gf (1.87)
and the corresponding damage rate evolution of the fiber is given by the expression

. f .. 8agf
¢ = Afb-}’i,—f- (1.88)

Making use of the consistency condition for the damage of the fiber
g =0 (1.89)

one obtains the evolution equation for ¢’ such that

o f

¢ = Xf:i;'f

(1.90)
where X7 is a fourth order tensor similar to X™ expressed by equation (1.78). The ther-

modynamic force associated with damage of the fiber Y/ is obtained in similar approach to
that of the matrix, Y™ and has a similar form except replacing the subscript m with f.
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1.6.3 Interfacial Damage Evolution

The second order symmetric tensor ¢? is used to describe the interfacial damage as depicted
in Figure 1.3 and expressed as folloes (Voyiadjis and Park, 1995[7])

¢° = ¢%(S,5) (1.91)

the power of dissipation due to interfacial damage is given by

¢ = ve.¢' 4 K/ (1.92)
and
m = o (1.93)
The function Q¢ is expressed by
0 = II¢— Adge (1.94)
where
¢' = Adg% (1.95)

From the consistency condition for the interfacial damage one obtains the evolution equation
for ¢ such that

s d 2 d

¢ = X%:6 (1.96)

The corresponding thermodynamic force for interfacial damage is obtained using a similar
procedures to that outlined for the two types of damage and is given by

aM gbcd
a4,

Y = (dch_l quk,o'kl)

1] abpg " p

(1.97)

1.7 Stiffness Tensor for the Model

In order to obtain the elasto-plastic stiffness tensor for the damaged composite system the
following procedure is followed. Separate constitutive equations for each of the matrix and
the fiber are first derived in their respective damaged configurations C™ and C’. These two
constitutive equations are then combined into one in order to express the overall composite
system in its partial effective configuration C. The interfacial damage is finally incorporated
into the system in order to obtain the final constitutive equation and its corresponding
stiffness tensor that includes all three types of damages in the damaged configuration C.

The elasto-plastic behavior of the matrix and the elastic behavior of the fiber in their
respective effective configurations C™ and C/ are given as follows

" = D":€" (1.98)
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and

& = B ¥ (1.99)

where D™ and E’ are, respectively, the fourth order elasto-plastic stiffness tensor of the
matrix and the elastic stiffness tensor of the fiber material. The stiffness D™ is given by
Voyiadjis and Kattan(1992b) [12] such that

= - (= P 1.100
D E Qm((,}&m E")®(E": 522) (1.100)
where
o OF o O] BT ik
Qm = o i ET o —ber (6™ — @& )(6M-&m):§,f;m (1.101)

and b is a material constant relating to the kinematic hardening of the matrix. The corre-
sponding yield function is given by

Fm 3
A kinematic hardening law of the Prager-Ziegler Type is used in conjunction with this work
such that

" —am): (6" —am) -l =0 (1.102)

&' = pm(em-am) (1.103)

where ™ is a local scalar multiplier.
The component damaged elastic stiffness tensors E™ and B’ in the local configurations

é™ and €7 respectively are given by (Voyiadjis and Kattan, 1993)[6]

E" = M™:E":M™ (1.104)
and
Bl = M. E M (1.105)

The overall response of the composite system in the partial effective configuration, C, is
given by

6 = D:é (1.106)
In order to obtain D use is made of the following relations in the partial effective configura-
tion, C

mam | f2f

& = &6 +a (1.107)
o = D":&" (1.108)
§ = B (1.109)
& = A ¢ (1.110)
& = Ak (1.111)
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The expression for Dis given by

D =D A"+dE A (1.112)

D™ is the elasto-plastic stiffness for the damaged matrix constituent. Equation (1.98) is
transformed from the undamaged matrix configuration C™ to the damaged matrix configu-
ration C™ in order to obtain the damaged elasto-plastic stiffness of the matrix constituent,
D" . Use is made of equation (1.27) together with its strain rate counterpart and substituted
in equation (1.98) in order to obtain D™, such that

D" = m™:D":m™ (1.113)

In order to obtain the overall damage response of the composite system the interfacial
damage tensor m? needs to be incorporated in order to transform D from the configuration
C to the overall damaged configuration C.

The elasto-plastic stiffness of the damaged material is given by

o = D:¢ (1.114)
where
D = m*:D:m™ (1.115)
The corresponding elastic stiffness F for the damaged composite is such that
E = M. E:M™ (1.116)
where the elastic stiffness in the partial effective configuration C is given by

E = #E" A" +dE A" (1.117)

1.8 Evolution of Material Parameters for the Case of
Isotropic Damage

The special case of isotropic damage is investigated here.
For the special case of uniaxial monotonic loading for isotropic materials the complemen-
tary strain energy is expressed as follows

V = — (1.118)
or

V o= BT (1.119)

where E is the elastic stiffness of the isotropic material and ¢ = ¢y; = @92 = ¢33. Making
use of equation (1.118) and

ov
v o= 52 (1.120)
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one obtains the conjugate stress for damage such that

1 2

Y = F= (1.121)
The damage criterion used here is simplified such that c is set equal to zero and therefore
Y PiuYu—1 = 0 (1.122)

where
Piju = (uy+ Vij)(ur + Vi) (1.123)

which is not a direct function of damage ¢ as in equation (1.45).
The corresponding damage criterion is given by

E-—z(l _ ¢)—604
[ ()7 + v

g _1=0 (1.124)

and
Vii, = M2 (1.125)

At initiation of damage, g = 0 and ¢ = 0, consequently one obtains

oo = vVAE (1.126)

where o is the uniaxial stress at initiation of damage.

In Figure 1.4 the damage criterion g versus o is plotted. Three values of oy are outlined
for different cases of v while n = 0.08 and ¢ = 0.55. The increase in the magnitude of v
delays the onset of damage. Small stress increments of 0.01 MPa were applied in order to
ensure convergence of the solution.

The power of dissipation of damage in this simple case is given as

I = Yp+Kic+o& +af (1.127)
Using the consistency condition one can solve for ¢ and obtain

_ 9y
aada

dp = 55— (1.128)
56+ 5y
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Figure 1.5 shows the behavior of damage for different values of the damage parameter
v. It is clear that smaller values of v introduce damage and failure at lower values of stress,
0.

Figures 1.6 and 1.7 show respectively the variation of damage with n and £ for a constant
value of v.

A consistent incremental damage theory is presented in this work that allows damage to
be path dependent with respect to the damage conjugate stress Y.

Table 1.4: Local Damage Parameters

Matrix Fiber | Interfacial
Damage | Damage | Damage

m | 0.08 0.06 0.075
n | 0.08 0.06 0.073
ns | 0.08 0.06 0.073
&1 055 0.52 0.55
&1 055 0.52 0.55
& | 055 0.52 0.55

vy | 0.0013 0.001 0.004
ve | 0.0013 0.001 0.003
vz | 0.0013 0.001 0.003

1.9 Evolution of Different Types of Damage for a
Composite Material Loaded in the Fiber Direction

In this case, a metal matrix composite is loaded monotonically in the elastic region, along
the fiber direction. Following the proposed constitutive model for damage presented in this
work, the evolution of the different types of damage versus stress is presented in Figure
1.8. The types of damage considered here are the matrix damage, ¢™, the fiber damage,
¢/, and the debonding damage, ¢, Their respective evolutions and behaviors are dictated
by the experimentally determined material parameters shown in Table 1.4 (Voyiadjis and
Venson,1995 [10]; Voyadjis and Park, 1995 [7]). As depicted in Figure 1.8, at a stress level
of 800M Pa, the respective damages are ¢/ = 0.005,¢™ = 0.013 and ¢ = 0.061. The
order of initiation and evolution of damage for each constituent is dictated by the material
parameters obtained experimentally.

Figure 1.9 shows the degradation of the matrix and the fiber stiffness due to the loading
described above, while Figure 1.10 presents the stress-strain curves for matrix, the fiber and
the whole composite utilizing the Mori-Tanaka homogenization procedure.
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1.10 Conclusion

A consistent coupled incremental damage and plasticity theory is presented in this work that
allows damage to be path dependent either on the stress history or the thermodynamic force
conjugate to damage. This coupling occurs only in the matrix since the fibers are assumed to
be only elastic. This is achieved through the use of incremental damage tensors. Damage and
plastic deformations are incorporated in the proposed model that is used for the analysis of
fiber-reinforced metal matrix composite materials. The proposed micro-mechanical damage
relations are used for each of the matrix and the fiber. This is coupled with the interfacial
damage between the matrix and the fiber exclusively. The damage relations are linked to
the overall response through a homogenization procedure.

Evolution of damage is performed for both the cases of overall isotropic damage and
damage of the individual constituents. The material parameters used here in order to quatify
damage, are quite versatile and adequate in describing the physical evolution of damage in
the composite constituents. This is clearly indicated in Figures 1.5- 1.8.

In order to resolve more complicated problems than those presented here, the finite
element method is required for determining the evolution of damage. The finite element im-
plementation is presentedin Chapter 3 and numerical results for cyclic damage are presented
in Chapter 4.
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Figure 1.1: Schematic representation of damage due to uniaxial loading
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Figure 1.2: Different configurations of the composite
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Chapter 2

Elasto-Plastic Stress and Strain

Concentration Tensors For
Damaged Fibrous Composites

2.1 Introduction

As composite materials undergo damage, the corresponding stress and strain concentration
tensors do not remain constant even for the case of elastic deformations. These tensors
are derived and presented here for fibrous composites that undergo damage in both the
constituents and the interfacial surface. The damage in the matrix includes nucleation
and growth of voids, etc., while in the fibers includes micro-fracture, etc. In addition,
interfacial damage is described as the damage due to debonding. The damaged stress and
strain concentration tensors are obtained for the elasto-plastic states of the metal matrix
composite material. Expressions are derived and presented here for the elasto-plastic stress
and strain concentration tensors for fibrous metal matrix composite materials in the damaged
configurations. The fibers are assumed to be continuous in this work. The elastic strain
and stress concentration tensors using the Mori-Tanaka method for the case of undamaged
fiberous composites are formulated by Chen, et al. (1992)[13]. These elastic concentration
tensors are constant in the undamaged or effective configuration due to the fact that damage
effects in the material are ignored. However, these damaged elasto-plastic concentration
tensors are a function of the fourth order damage tensors in the damaged configuration.

2.2 Theoretical Preliminaries

In the initial configuration, Cy , the composite material is assumed to be undeformed and
undamaged. The initial matrix and fiber subconfigurations are denoted by C§* and C({ ,
respectively. Due to applied loads, the composite material is assumed to undergo damage
and the resulting overall configuration is denoted by C'. The resulting matrix and fiber local
subconfigurations are denoted by C™ and C/,, respectively. Damage is quantified using
the concept proposed by Kachanov (1958)[1] whereby two kinds of fictitious configurations
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C and C of the composite systems are considered. C configuration is obtained from by
removing all damages, while C configuration is obtained from by removing only interfacial
damage between the matrix and the fiber. C is termed the full effective configuration, while
C is the partial effective configuration. The matrix and fiber subconfigurations of the full
effective configuration are denoted respectively by C™ and C/ . Similarly, C™ and C/ are
the subconfigurations of the partial effective configuration. This is shown in Figure 2.1.

The basic feature of the approach presented here is that local effects of damages are
considered whereby these effects are described separately by the matrix, fiber,and interfacial
damage tensors. The fourth order matrix damage effect tensor M™ and the fourth order
fiber damage effect tensor M/ are defined such that

and
- f -
Uifj = iju"l{z (2:2)

where 3™ and &/ are the full effective matrix and fiber stresses in the subconfigurations ¢™
and &, respectively, while ™ and &/ are the partial effective matrix and fiber stresses in
the subconfigurations ¢™, & respectively. In addition, the fourth order interfacial damage
effect tensor M is defined such as

2

where & is the partial effective composite stress in the C' configuration, while & is the overall
stress of the composite in the C' configuration. The respective damage effect tensors are
clearly indicated in Figure 2.1. The local damage effect tensors M™ and M/ encompass
all the pertinent damages related to the matrix and fiber, respectively, while the damage
effect tensor M? reflects the damage pertinent to the interfacial damage such as debonding

(Voyiadjis and Park, 1995)[7].

2.3 Theoretical Formulation of the Overall Damage
Effect Tensor M

Considering the overall configurations C,C and C, one can introduce an overall damage
effect tensor M and a partial damage effect tensor M for the whole composite system.
These tensors are defined similarly to the definitions of M™, M/ and M? such that

0ij = Mijnon (2.4)
and

oij = Mijuou (2.5)

The tensor M reflects all types of damages that the composite undergoes including the
damage due to the interaction between the matrix and fibers, while the tensor M reflects
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the damage in the matrix and fiber excluding the interfacial damage. This tensor has been
studied previously by Voyiadjis and Kattan (1993)[6]. A matrix representation was explicitly
derived for this fourth order tensor by expressing the stresses in vector form. The tensor M
was shown to be symmetric. The symmetry property of the tensor M is used extensively in
the derivation that follows. The same holds true for the tensors M™, M/ and M¢. Similar to
tensor M¢, both tensors M™ and M/ could be represented in terms of second order damage
variable tensors ¢™ and ¢/ respectively, as shown by Voyiadjis and Park (1995)[7]. The
overall effective composite stress & is related to the local effective stresses 3™ and &/ by
making use of the micromechanical model proposed by Dvorak and Bahei-El-Din (1979)[14]
such that

G; = ol +la] (2.6)

where ¢™ and & are the matrix and fiber volume fractions, respectively in the undamaged
configurations. The partial effective stresses of the matrix and fiber are related to the partial

effective overall stress of the composite by the partial damage stress concentration tensors,
such that

om = B,.0m (2.7)
&I{I = Bklpq&pq (2-8)

where B” and Bf are the partial damaged stress concentration tensors for the matrix and
fibers, respectively. Substituting equations (2.1) and (2.2) into (2.6), one obtains the follow-
ing expression:

Gij = " MIyom+e M6 (2.9)
Making use of (2.7) and (2.8) into (2.9), one obtains the following expression:
6ij = " gkl‘éz;pq&l)q (210)
or
5; = (E"MZ BR, +& M Bl )& (2.11)
17 17kl = kipg 17kl ~ klpq/ ™ P
Finally substituting equation (2.3) into (2.11), one obtains the following relation:
6ij = (EmMZLleZIqu + EfMigkl'él{lpq)ngrsa”s (212)
Comparing equation (2.4) with equation (2.12), the following relation is obtained
Mijkl = (EmMi?qu;rérs + EfMt{;qupqrs)Mfskl (213)
or
M = MijesM7Ly, (2.14)
where
M = e MJ, Br +eM] B/, (2.15)
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2.4 Effective Volume Fraction

Since the fictitious effective configuration is obtained by removing all damages that the
material has been subjected to consequently it follows that the volume fractions in the
effective configuration will differ from the initial volume fractions. However, the volume
fractions of configuration C are assumed to be equal to the initial volume fractions. In order
to obtain an evolution expression for the effective volume fractions, we first address the simple
case of one-dimensional damage model using the definition of Kachanov’s (1958)[1] effective
stress concept. The effective local stresses for the matrix and fiber in the one-dimensional
case are defined by

—m 1 ~m
" = 1_¢ma (2.16)
and
5 o= L 5 (2.17)
= 14 .
where
dA™ — dA™
"= — 2.18
. — (2.13)
and
dA! — dAf
f= = = 2.19
. — (2.19)

where d/:V and dA" are differential areas normal to the fiber direction in the configuration
C, and C, respectively, where r = m or f. The corresponding initial volume fractions are
defined as follows:

g Zjﬁ (2.20)
where
dA; = dAT +dA] (2.21)
Similarly, the effective volume fractions can be defined such as
& = ‘ig (2.22)
and
dA = dA™ +dAS (2.23)
From relations (2.18) and (2.19), one obtains respectively,
dA™ = (1 —¢™)dA™ (2.24)
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and
dAY = (1-¢/)dA’ (2.25)

Substituting relations (2.24) and (2.25) into equation (2.22) and making use of the assump-
tion, ¢ = ¢’, one obtains the following relations

Y dA!
— = = 2.26
dA™ dAT (2.26)
one obtains the following relations
o = 1-¢ (2.27)
(1—¢m)+ U—¢0%
and
— &
o 1-¢ - (2.28)
(1—eN+0-om%
Equations (2.27) and (2.28) satisfy the constraint
a4 =1 (2.29)

The variation of the effective volume fractions with matrix and fiber damage are shown
in Figures 2.2 and 2.3, respectively, for the uniaxially loaded lamina. The initial fiber
volume fraction is set equal to 0.35.

The generalization of equations (2.27) and (2.28) to the three-dimensional damage model
using the second order damage tensor ¢ may be expressed as follows:

1—

" = e (2.30)
(1-dm) +(1-¢l) S
and
& = fl—‘bgq - (2.31)
-+ (- 5%
where
m (¢ 7)"?
eq = —'—;nz— (232)
and
fy1/2
¢£q = (¢ z ) (2.33)

where ¢™ and ¢/ are the critical values of ¢z, and ¢eq, respectively, at failure.
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2.5 Partial Damaged Stress and Strain Concentration
Tensors

The matrix and fiber stress concentration factors are defined as fourth-rank tensors. As com-
posites undergo damage, the stress and strain concentration factors do not remain constant.
The relations for the effective-elastic stress concentration factors for the matrix and fiber in
the effective configuration are given by the following two relations respectively: (Figure 2.4)

oi; = Biuou (2.34)
and
5‘{3- = Bl-fjkl&kl (235)

where B™ and B/ are the undamage stress concentration tensors for the matrix and the
fiber, respectively. The experssions of the undamaged stress concentration tensors using the
Mori-Tanaka Method are given in the next section. Making use of equations (2.1) and (2.5)
in expression (2.34), one obtains

gi; = (Mi;;zB;’;rsMrskl)&kl (2.36)
or
7 = Bfuw (2.37)
where
BTy = M;mBr M. (2.38)

In equation (2.37), the tensor B™ is the elastic matrix stress concentration tensor in the par-
tial damaged configuration C'. Similarly, the corresponding elastic fiber stress concentration
tensor B/ in the partial damaged configuration C' may be obtained such that

Bl, = M3 Bl M. (2.39)
The variation of the partial damaged stress concentration tensors B™ and B/ with damage
is indirectly demonstrated through Figures (2.5) to (2.12).

The material properties are shown in Table 1.1. This is demonstrated for a single lamina
loaded axially along the fiber direction. Figure (2.5) shows the variation of the ratio of the
axial stress in the fiber to the axial stress in the matrix with respect to the axial fiber damage
¢{1 in conjunction with several matrix damage cases. Similarly, the variation of the ratio of
the axial stress in the matrix to the axial stress in the fiber with respect to the axial damage
in conjunction with several fiber damage cases is shown in Figure (2.6). It is clear that the
stress ratio is constant in the case when the damage in the matrix is equal to the damage
in the fibers. In Figure (2.7) the ratio between the local phase stress and the overall stress

is plotted with respect to the fiber damage (i.e., ¢7} = 0) for several fiber volume fractions,
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and versus (i.e.,qS{j = 0) in Figure (2.8). A nonlinear relation is observed in both Figures
(2.7) and (2.8). In Figures (2.9) to (2.12), different stress ratios corresponding to those in
Figures (2.5), (2.6), (2.7), and (2.8) are plotted with respect to damage ¢!, or ¢, .

One assumes a similar relation for strains as that postulated for stresses given, by equation
(2.6) such that in the effective configurations C™ , C/ and C one obtains

g = eean+eld (2.40)

where €™ and € are the effective matrix and fiber strain tensors, respectively, and € is
the effective overall composite strain tensor. In the case of the effective elastic strain
concentration factors for the matrix and fiber in the effective configuration C' as shown in
Figure (2.4) one obtains the following expressions:

and
e, = Aleu (2.42)
where A™ and A’ are the undamaged strain concentration tensors for the matrix and the
fiber, respectively. The experssions of the undamaged strain concentration tensors using the
Mori-Tanaka Method are given in the next section.
Making use of the following equations relating the effective elastic strains and the corre-
sponding partial effective elastic strains (Voyiadjis and Park, 1995)[7]

E:’j = Mz‘;i:lg;cl (2.43)
& o= i;;';e;;}’ (2.44)
z{j = M,.;,{,eﬁ, (2.45)

together with equations (2.41) and (2.42) one obtains the partial damaged elastic strain
concentration tensors in the partial damaged C configuration . These are given by the
following relations:

—?}kl = Mm A M_l

ijpq? *pgrs*irsk

,(48) (2.46)
and

A,.f].k, = ML AL M71(48) (2.47)

1jpg“ tpgrs*irs

In Figure (2.13), the strain ratio of the axial strain in the fiber to the axial strain in the
matrix with respect to both the matrix and fiber damage is shown to be constant. The
strain ratio of the transverse strain in the fiber to the transverse strain in the matrix with
respect to fiber damage is shown in Figure (2.14). Similarly, the strain ratio of the transverse
strains is shown in Figure (2.15) with respect to matrix damage. The ratio between the local
phase strain and the overall strain (€},/e22 ) is plotted with respect to the fiber damage ¢7;
(i.e.,¢2, = 0) for several fiber volume fractions in Figure (2.16), and versus ¢} (i.e.,¢, = 0
) in Figure (2.17).
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2.6 Mori-Tanaka’s Elastic Strain and Stress
Concentration Tensors

The expressions for the undamaged elastic stress and strain concentration tensors given here
are based on the Mori-Tanaka method. In the recent paper by Chen, et al. (1992)[13], the
expressions for the elastic strain concentration tensors A” and the elastic stress concentration
factors B” are given by

_zr'jkl = Hirqupqul (2.48)
_{jkl = ?quG'qul (249)
where
qukl = [Emﬁ;Zkl + éff_lqul}_l (2-50)
G = [E" T+ T 07 (2.51)

The tensors H and J' are termed the partial concentration factors for strain and stress and
are expressed in the following form:

Hz{qkl = [Lgu + qurS(Efskl - Ena)l™ (2.52)
jpquz = [Tpgkt + Qpors(Erly — EZi)] ™ (2.53)
Jort = e (2.54)

where Ef and E™ are the elastic stiffness tensors of the fiber and matrix, respectively. The
tensors P and Q depend only on the shape ofthe inclusion and on the elastic moduli of the
surrounding matrix. For example, for an inclusion in the shape of a circular cylinder in
isotropic matrix, the tensor P written in matrix form (6x6 array) is given by ‘

(0 0 o 0 0 0]
0 oty wmagy 0 0 O
—aq a+4b
(P] = 0 8b(a+b) 8b(atb) 0 0 0 (2.55)
0 0 0o £ 0 0
b
0 0 0 0 21?(:-2%) 0
(0 0 0 0 L]
(2.56)
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where r =m, f,d

Em ém
- 4 2.57
¢ = 3i—om 3 (2:57)

Em
e (2.58)

where E™ is the Young’s modulus of the matrix, ;\"i is the Poisson ratio of the matrix, and
G™ is the shear modulus of the matrix.The tensor @ in equation (2.53) is given by

Qiju = ENy— Ef, PogrsETo (2.59)

pe

2.7 Damaged Stress and Strain Concentration tensors
Including Interfacial Damage
In order to include the interfacial darhage in the damaged stress concentration tensors, two

additional damage effect tensors M%™ and M?¥ are introduced as shown in Figure (2.18).
The M%™ termed interfacial damage effect tensor for the matrix is defined as follows:

Qr

Z* = Mz]klakl (2.60)

Similiarly, the M% termed interfacial damage effect tensor for the fiber is defined in the same
manner as above:

] i

The overall effective composite stress in the partial effective configuration C is postulated in
the same manner as equation (2.6):

G; = &el + el (2.62)

1]

Similiar to equations (2.7) and (2.8), the stresses of the matrix and fiber in the damaged
configuration C are related to the overall stress of the composite by the the full damaged
stress concentration tensors such that (Figure (2.18))

UZL = BZ}HUH (263)
and

where B™ and B/ are the damaged stress concentration tensors including the interfacial
damage. Substituting equations (2.60)) and (2.61) into (2.62), one obtains the following
expression:

&ij = (~m zglel::rItpq +¢ MJkIBkIpq)Uf-’q (265)
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Comparing equation (2.3) with (2.65), one obtains the following relation:
Miy = ("MZ B+ &MY Bl (2.66)

JypqTp tprq
An interfacial damage variable, ¢%, for the interfacial damage effect tensorM? is defined by
Voyiadjis and Park(1995)[7], however the damage variables for the damage effect tensors
M and M¥ are not defined directly. '
Finally, the damaged stress concentration tensors including the interfacial damage are
obtained by making use of equations (2.3), (2.60), (2.61), (2.63) and (2.66) such that

:'?kl = Mi;:;nBerM;iskl (267)
—df 5
Bifjkl = Mijp‘;Bz{qrsM:-iskl (268)

Similarly, the damaged strain concentration tensors including interfacial damage are obtained
such that

ATy = M AL MY (2.69)
and
df 3 -
A{jkl = MiquAIj;qrsMrs‘Iicl (270)

2.8 Damaged Plastic Stress and Strain Concentration
Tensors

In the case when the composite material has undergone plastic deformations, the correspond-

ing expressions for the effective stress concentration tensors for the matrix and the fiber in
the configuration are given by the following relations respectively:

dol} = Blhou (2.71)
and
s, = Bfﬁd&kz (2.72)

where B™ and B’? are the effective instantaneous plastic stress concentration tensors. These
stress concentration tensors are obtained in the same way as their elastic counterparts.
The resulting expressions for the partial-damaged plastic stress concentration tensors are
expressed as follows:

Bif = mgl Bl Mk (2.73)

tjrs - rsuv

and

B}, = mL BiE, Mk (2.74)

ijrsrsuv
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The effective instantneous plastic strain concentration tensors can be determined by
making use of the following relations

de = Al%dey (2.75)

and
del, = Al%dey (2.76)
Similarly, the partial-damaged plastic strain concentration tensors are expressed as follows:
Az]kl = mzjrsA::ﬁv 7 ':vlkl (277)

and

f ~ —1

Az]kl = zjrsAr)f.fuv Mkl (278)

Finally, the damaged plastic stress concentration tensors including the interfacial damage
are obtained similar to those of equations (2.67) and (2.68) such that

Bh = m ¢ BIe ml (2.79)

ijrs Prsuv

and

B{jzl)cl = VBl mﬁvkl (2.80)

1_7rs rsuv

The damaged plastic strain concentration tensors including interfacial damage are obtained
such that

mp d d
Aijkl - z]TsAzvauvkl (281)
and
f . df d
Aij;;cl - mz]rsAr{fuvmuukl (282)

where m?™ and m¥ are the 1ncremental interfacial damage effect tensors for the matrix and
the fiber, respectively, while m? is the incremental interfacial damage effect tensor.

2.9 Conclusion

The stress and strain concentration tensors derived here are for fibrous composites with
continuous fibers that undergo damage in both the constituents and the interfacial damage.
The damage in the matrix includes nucleation and growth of voids, micro-fracture, etc., while
in the fibers includes micro-fracture, etc. In addition, interfacial damage between the matrix
and fiber is descibed as debonding damage. The damage stress and strain concentration
tensors are obtained for the elasto-plastic states of the material and are based on the Mori-
Tanaka method in the undamaged configuration of the material. The derived concentration
tensors are functions of the damage effect tensors and undamaged concentration tensors. Asa
consequence of damage, the volume fractions in the effective undamaged configuration differ
from the initial volume fractions. Evolution expressions for the effective volume fractions
are also derived in this work. Consistent correlations between stresses, strains, and damage
are obtained for the newly derived concentration tensors.
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Figure 2.1: Schematic representation of configurations of composites.

41



1.0
E o8 c”
3]
8 B
' 0.6
(%} . o
E
: -
S
[ 0.4 o
2 -
S 02t
0.0 | ] 1 i 1 | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Fiber Damage ¢1fl

Figure 2.2: Variation of the effective volume fractions with respect to fiber damage.
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Figure 2.3: Variation of the effective volume fractions with respect to matrix damage.
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Figure 2.4: Schematic representation of damage in the local constituents of the composite.
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Figure 2.5: Variation of stress ratios of fiber to matrix with respect to fiber damage ¢/,.
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Figure 2.6: Variation of stress ratios of fiber to matrix with respect to fiber damage ¢7;.
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Figure 2.7: Variation of stress ratios of local phases to composite for different fiber fraction
with respect to fiber damage ¢?,.
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Figure 2.8: Variation of stress ratios
with respect to matrix damage ¢7;.
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Figure 2.9: Variation of stress ratios of fiber to matrix with respect to fiber damage ¢/,.
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Figure 2.14: Variation of transverse strain ratio of fiber to matrix with respect to fiber

damage.

Figure 2.15: Variation of transverse strain ratio of fiber to matrix with respect to matrix

damage.
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Chapter 3

Local and Interfacial Damage Analysis
of Metal Matrix Composites Using
the Finite Element Method

3.1 Introduction

A micromechanical damage composite model is used here such that separate local evolution
damage relations are used for each of the matrix and the fiber. In addition, this is coupled
with interfacial damage between the matrix and the fiber exclusively. An overall response
is linked to these damage relations through a certain homogenization procedure. A finite
element analysis is used for quantifying each type of damage and predicting the failure loads
of dog-bone shaped specimen and center-cracked laminate metal matrix composite plates.
The development of damage zones and the stress-strain response are shown for two types of
laminated layups, a (0/90), layup and a £(45), layup.

Damage and plastic deformation is incorporated in the proposed model that is used
for the analysis of fiber-reinforced metal matrix composite materials. The proposed micro-
mechanical damage composite model used here is such that separate local constitutive dam-
age relations are used for each of the matrix and the fiber. This is coupled with the interfacial
damage between the matrix and the fiber exclusively. The damage relations are linked to the
overall response through a certain homogenization procedure. Three fourth-order, damage
tensors M™, M/ and M¢ are used here for the two constituents (matrix and fibers) of the
composite system. The matrix damage effect tensor M™ is assumed to reflect all types of
damage that the matrix material undergoes such as nucleation and coalescence of voids and
microcracks. The fiber damage tensor M/ is considered to reflect all types of fiber damage
such as fracture of fibers. An additional tensor M¢ is incorporated in the overall formulation
that represents interfacial damage between the matrix and the fiber. An overall damage
tensor, M, is introduced that accounts for all these separate damage tensors M™, M/ and
M,
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3.2 Coordinate Transformation

The three-dimensional damage elasto-plastic constitutive equation for single lamina referring
to the principal material coordinate system has been introduced in equation (115). The
general three-dimensional constitutive relation of a composite lamina referring to the off-
axis coordinate system denoted by prime ” ’ ” can be obtained from equation (1.114) by
coordinate transformation. Here, the x-y plane coincides with the z; — z2 plane and the
angle between the x1 and x axis is §. The stress and strain vectors in those tow coordinate
systems are related by

{do} = [T]{do}’ (3.1)

{de} = [TH{de} (3:2)

where [T] is a transformation matrix given by

cos §? sinf> 0 —2cosfsind 0 0 W
sin 62 cosf? 0 2cosfsinb 0 0
0 0 1 0 0 0
T = 3.3
7] cosfsinf cosfsin® 0 cosb? — sin §? 0 0 (33)
0 0 0 0 cos@ sinf
0 0 0 0 —sinf cos 0]
Substituting equations (3.1) and (3.2) to (1.114), we obtain the relation
{do} = [T]'[D][T]{de}’ (3.4)

Thus, the damage elasto-plastic stiffness matrix referring to the off-axis coordinate = —
y — z system is

(D) = [T}7'[D][T] (35)

The constitutive equation for plane stress problem is obtained from imposing the plane
stress conditions 0,, = 0, = 0y, = 0 to equation (3.4). The explicit expression of constitu-
tive equation for plane stress is as follows:

dog: D;, D3y, Dis de,
doy, = |D;; D; Dj deyy (3.6)
dogy D3, D3, D degy
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where

DI] = Dlll—DisD.;l/DI/w

Di, = D112 - Dingz/Dgrs
D; = D'21 - D;SDgl/DfliIB
Di; = D,14 - DQBDQG/DQB
Dy = D:n - D23D§1/D§3 (3.7)
D3 = D,22 - D'23D§2/D33
D33 = Dy — D’23D§4/D33
D;, = D«,u - Dgngz/Dgs

D;3 = DQ4“DQ3DQ4/D§,3

3.3 Gross Damage Elasto-Plastic Stiffness

The elasto-plastic damage stiffness tensor for a single lamina in its principal material coor-
dinate system has been presented in equation (1.115). This stiffness tensor is transformed to
the loading coordinate system and expressed as [D]; in matrix form. A symmetric stacking
of plies is considered here such that ¢ is the thickness of the laminate consisting of n plies and
t; is the thickness of the kth lamina. The average stress increment is expressed as follows
(in vector form):

n

{dodow = [3 U0 Nts] 1de} (3.8)

k=1

Making use of equation (3.8), one can define the gross damage elasto-plastic stiffness for the
laminated composite as follows in matrix form:

[D,] = H—i[D*]ktk] (3.9)

Making use of the assumption of constant strain through the laminate thickness, the stresses
in each lamina are calculated as follows:

{do}y = [D*|e{de} (3.10)

3.4 Finite Element Formulation

The governing equation of the finite element method can be derived from the principle of
virtual work such as

/O'ijééijdv = /qi(gu,’dv-l-/t,'(SuidA (3.11)
1% |4 A
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where éu; is a field of virtual displacements that is compatible with applied forces and de;;
is the corresponding field of compatible virtual strains given by
2 a:L' J a:L'i

561']' = (3.12)

and ¢; and t; are body forces and surface tractions, respectively. For a small deformation
analysis, we have

u = N;Uj (3.13)

Jui = N,’j((sUj) (3.14)

where U; is the displacement of nodal points and N;; is the displacement interpolation
function or the shape function.  Substituting equations (3.12) and (3.14) into (3.11), one
obtains the equilibrium equations as follows:

/ %‘aﬂdv = / giNidV + / t;NindA (3.15)
v = Oz; 14 A
One finally obtains the incremental equilibrium equations by differentiating both sides of
equation (3.15)
[K{dU} = {dP} (3.16)

where {dU} is the unknown incremental displacement vector of the nodal points, and {dP}
is the corresponding incremental nodal forces given by

dP, = /dqideV-{-/dt,’NiadA (317)
14 A

where dg; is the incremental body force and dt; is the incremental surface traction. In
equation (3.16), [K] is the stiffness matrix which is given by

- ONia ONgs

Aab = /‘;'EEDQM%TC{V (318)
The incremental equilibrium equation (3.16) expresses the equilibrium between the internal
forces {dF} (on the left-hand side) and the external force {dP} (on the right-hand side).
The residual force vector {dR} is defined by

{dR} = {dP}-{dF} (3.19)

In a damage elastic-plastic analysis, because of the nonlinear relationship between the
stress and the strain, the equilibrium equation (3.16) is a nonlinear equation of strains, and
therefore, is a nonlinear function of the nodal displacement. Iterative methods are usually
employed to solve equation (3.16) for displacements corresponding to a given set of external
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loads. Moreover, since a damage elasto-plastic constitutive relation depends on deformation
history, an incremental analysis following an actual variation of external forces is used to
trace the variation of displacement, strain, stress, and damage along with the external forces.

In an incremental analysis, the total load { P} acting on a structure is added in increments
step by step. At the (n + 1)th step, the load can be expressed as

n1{p} = "{P}+"*! {dP} (3.20)

where the left superscript n indicates the nth incremental step. Assuming that the solution
at the nth step, are known, and at the (n+1)th step, one obtains the following, corresponding
to the load increment {dP},

MY = ) 47 {du) (3.21)
W} = o)+ {do} (3.22)
ML) = nfe} 4™ {de) (3.23)

G = @)+ {de) (3.24)

3.4.1 Solution

A full Newton-Raphson method is used in this work to solve the system of nonlinear equa-
tions that arise from the equilibrium equations. A brief description of the method is given
by Voyiadjis (1973)[15]. The incremental analysis technique described in this chapter is suc-
cessfully implemented into the finite element program NDA (Nonlinear Damage Analysis)
using the above described iterative method. The steps involved in the process of solving are
briefly described below.

o INCREMENT: Loop for each load increment

a) Calculate the load or applied displacement increment for the current incremental
step or input the load/applied displacement increment.

b) ITERATE: Loop for full Newton-Raphson iteration:
1) Compute the residual load vector for this iteration subtracting the equilibrium
load from the load computed for the increment.

2) Rotate the appropriate loads and applied displacements such that the degrees
of freedom at the skew boundary (a boundary condition that is not along the
global coordinate system) are normal and tangential to the skew boundary.

3) Assemble the stiffness matrices and find the equivalent loads for the applied
incremental displacements. Since explicit integration is difficult, Gaussian
points are used to evaluate the above integrals.
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4) Solve for the incremental displacements using a linear solver.

5) Add the solved iterative incremental displacements to the applied incremental
displacements to obtain the complete iterative incremental displacements.

6) Rotate back the complete iterative incremental displacements at the skew
boundaries to the global coordinate system.

7) Cumulate the complete iterative incremental displacements to the total in-
cremental displacements.

8) Find the stresses due to the iterative incremental displacements. From the it-
erative deformation gradient and the stresses updated, compute the updated
constitutive matrix D. From the total incremental displacements accumu-
lated so far and the D matrix, calculate the equilibrium load vector.

9) Check if the convergence of solution is met using a particular convergence
criterion. If convergence has not occurred, go back to the step ITERATE.

c) If divergence occurs according to the convergence criterion, then reduce the load
increment appropriately as specified by the user and start the iterative solution
over again for that load increment.

d) If divergence occurs for a load increment that has been reduced 'm’ times (specified
by the user), then report ’convergence not met’ and leave the solution phase.

e) If convergence has occurred, then perform the following operations before going
for the next increment.

1) Update the nodal positions by adding the currently obtained incremental
displacements.

2) Transform the quantities pertaining to the material property to the present
configuration.

3) Print out the appropriate quantities pertaining to the converged increment
according to the user’s specifications.

f) If the total load is not reached, go back to the step INCREMENT.

3.4.2 Stress and Damage Computations

e Step 1. Retrieve sij, srij, frij.. Retrieve also the information whether the previous
loading was a damage loading or not (IDAMG) and plastic loading or not (IYILD).

a) If IDAMG = 0 when retrieved, then evaluate the incremental elastic-predictor
stress of; assuming that the loading is elastic. Use the undamaged elastic stiffness
matrix for the calculation (dafj = Eyjude).

b) If IDAMG # 0 when retrieved, use (dafj = Fijuder).
¢) Calculate the incremental elastic-predictor stress of matrix constituent do;;p .

d) Check if the predicted stress state of matrix constituent is inside the yield surface
or not.

e) If the stress state of matrix constituent is inside the yield surface then:

96




1) Assign elastic stiffness to the constitutive stiffness and the predictor stress
increment to the actual computed stress increment.

2) Set IYILD = 0 indicating the elastic loading has taken place.
3) Exit to Step 2. Otherwise, go to the next step.
f) Set IYILD = 1, then:
1) Calculate the elasto-plastic stiffness D (when IDAMG = 1) or D (when
IDAMG = 0).

2) Update the quantities oy, 077, of
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m

a,‘].

e Step 2

a) Check the damage criteria using the updated quantity o7.
b) If damage criteria g" < 0, then IDAMG = 0. Exit from the routines.

c) If damage criteria g" > 0, then IDAMG = 1. Calculate the damage increment
d¢}; and update damage quantity ¢;.

d) Store the updated quantities in a file.

3.5 Application to the Dog-Bone Shaped
Specimen and the Center-Cracked
Laminated Plates

The finite element method is used for solving a dog-bone shaped specimen and a center-
cracked laminate plate shown in Figure 3.1 that is subjected to inplane tension. Due to
symmetry in geometry and loading as shown in Figure 3.1, one-quarter of the plate needs
to be analyzed.

Two-dimensional plane stress analysis rather than three-dimensional analysis is used here
since the thickness of plate is much smaller than the other dimensions. Applying the ap-
propriate boundary conditions for the symmetry, both one-quarter of the center-cracked
laminate plate and the dog-bone shaped specimen are discretized using plane stress finite
elements. The finite element meshes chosen for analyzing the problems are shown in Fig-
ure 3.2.

The four-noded quadrilateral element is used in both finite element analyses. Two types
of laminate layups (£45)s and (0/90); each consisting of four plies are used here. The thick-
ness of each ply is equal to 0.254 mm. Since both layups are symmetric, no curvature is
assumed. Hence, the strain through the plate thickness is assumed to be the same. The
material properties and damage parameters using the proposed constitutive model are listed
in Table 1.1 and Table 1.4, respectively.

The following convergence criterion is used in this analysis which is based on the incre-
mental internal energy for each iteration in that incremental loading (Bathe, 1990)[16]. It
represents the amount of work done by the out-of-balance loads on the displacement incre-
ments. Comparison is made with the initial internal energy increment to determine whether
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Figure 3.1: Dog-bone shaped specimen and center-cracked laminated plate.

or not convergence has occurred. Convergence is assumed to occur if for an energy tolerance
€g, the following condition is met:

AU(i)(n+1R _n+l F(z’—l)) < eg(AUV ("R —n F)) (3.25)

where AU( is the incremental displacement residual at the (i)th iteration, ("+! R—"*1 F(i-1)
is the out-of-balance force vector at (i-1) iteration, and (AU®)("* R —* F)) is the internal
energy term for the (i)th iteration in the (n+1)th increment. Divergence is assumed to occur
if the out-of-balance internal energy for the (i-1)th iteration is greater than the out-of-balance
internal energy for the (i)th iteration.

The load is incremented with uniform load increments of 5 MPa until the principal
maximum local damage value ¢ reaches 1.0 ¢; < 1.0). The principal maximum local
damage value ¢ is given by:

¢; — 11 ';4)22 + \/(¢11 5 ¢22 )2 + ¢122 (326)
Consequently, material failure at integration point is assumed when ¢, > 1. The principal
damage value of the integration point in all elements is monitored at each load increment
since it is used to determine the onset of macro-crack initiation of the material. The dog-bone
shaped specimen failed when the final load of 270 MPa is reached for the(+45); layup and
480 MPa for the (0/90), layup. These failure loads are close to the experimental failure loads
276 MPa for the (+45), layup and 483 MPa for the (0/90), layup (Voyiadjis and Venson,
1995)(10]). The material failure for the center-cracked specimen occurs at the front of the
crack tip when the final load of 80 MPa is reached for the (+45), layup plate and 120 MPa
for the (0/90), layup plate.
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Figure 3.2: Finite element meshes.
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Figure 3.3: Stress-strain curves of [£45]; layup and [0/90], layup

3.6 Discussion of the Results

The stress-strain curves from both the finite element analyses and experiments of the two
types of layups of the dog-bone shaped specimens are shown in Figure 3.3. Good correlation
is shown between the finite element analysis results and the experimental data obtained by
Voyiadjis and Venson (1995)[10]. Strain contours for the (£45); layup and (0/90), layup
of the center cracked plates are shown in Figures (3.4) and (3.5), respectively. Since the
two types of layups are symmetric, the strains in each laminae of the layup are the same.
However, the stress and damage distributions are different for each laminae of the layup
since each laminae has a different stiffness. Stress contours for each laminae are indicated
in Figure (3.6) for the (£45), layup and Figure (3.7) for the (0/90), layup. In Figures (3.8)
and (3.9), comparison is made between the damage analysis and the elastic analysis for the
stress syy contours around the crack tip. The damage analysis shows considerable stress
reduction due to the damage around the crack tip. The stress o,, at the front of the crack
tip as obtained from the elastic solution is higher than that of the material strength of the
layup. However, in the damage elasto-plastic analysis, the stresses are reduced such that
they are close to those of the material strength. The oy, stress reductions at the front of
the crack tip are more than 50Stress redistributions are clearly indicated in Figures (3.8)
and (3.9). Primarily due to the stress reduction around the crack tip, the stress is therefore
transferred to the outer portion away from the crack tip. This is clearly indicated in Figure
(3.9) where the stress reduction at the 90° ply is primarily due to considerable interfacial
damage.

The local damage contours around the crack tip are shown in Figures (3.10), (3.11), (3.12),
and (3.13), for the failure loads in the case of [+45], [—45],[0], and [90] ply, respectively. For
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the [445]; layups, all types of damages such as matrix, fiber and interfacial are developed.
Fiber damage is considerably more spread in the [0] ply than the interfacial damage. On
the otherhand, interfacial damage is more pronounced with matrix damage for the [90] ply.
However, fiber damage is much less developed in the case of the [90] ply. This is in line with
the experimental results obtained by Voyiadjis and Venson (1995)[10].
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Figure 3.4: Strain contours for [+45]; layup (in %)

3.7 Summary and Conclusions

The proposed constitutive model is implemented numerically using the finite element method.
The model is used to analyze the dog-bone shaped specimens and the center-cracked lam-
inated plates subjected to inplane tensile forces. Very good correlations are demonstrated
between the numerical results obtained using the proposed theories and the experimental -
results for uniaxial tension. The stress and damage contours in the case of the center cracked
plate show that stress redistributions and damage are qualitatively in line with the physics of
deformation. The analysis presented here allows the separate quantification of the different
types of damages such as matrix, fiber or debonding.

The authors are currently working on damage due to delamination which will be intro-
duced into the proposed model in future work. In order to capture delamination due to
interlamina stresses, a three-dimensional, finite element analysis will be performed.
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Figure 3.12: Damage contours around crack tip at the failure load for [0] lamina.
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Figure 3.13: Damage contours around crack tip at the failure load for [90] lamina.
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Chapter 4

A Damage Cyclic Plasticity Model
For Metal Matrix Composites

4.1 Introduction

A mathematical model is presented here to simulate the behavior of metal matrix composites
under cyclic proportional and non-proportional loading. This model incorporates both the
phenomena of damage and cyclic plasticity. In this paper a brief description of the cyclic
plasticity model is presented, {17], and based on this model the development of the damage
based plasticity model is outlined.

The cyclic plasticity model is based on an anisotropic yield criterion proposed [17], [18].
The salient features of this criterion have been outlined along with some experimental com-
parisons. The model further uses a proposed non-associative flow rule and a modified form
of the bounding surface model [19], for the case of anisotropic materials. This procedure
involves the computation of the anisotropic plastic modulus. Experimental data from [20]
and [21] have been used the for the computation of the various material parameters as well
as comparison with experimental results.

All materials undergo damage, which is used synonymously with the degradation of
the material’s elastic stiffness here, as repeated loading takes place. To account for this
phenomena a damage-plasticity model is presented here. This is based on the cyclic plasticity
behavior blended with the damage model, [7] and [22].

In this paper, the development of the yield surface is presented at the outset followed by
the cyclic plasticity model for the material treated as a continuum. Two different damage
plasticity models are then outlined along with comparison of results in each case.

4.2 Description of the Yield Surface

An anisotropic yield surface of the form

M6 —1 = 0 (4.1)

is used here where &;; is the overall state of stress in the local coordinate axes. The local
coordinate axes is defined as the principal axes of anisotropy of the material whereas the
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global coordinate axes is the general axes along which loading is applied. Figure 4.1 shows
the details of the local coordinate axes with respect to the global coordinate axes.

y /

x-y: general axes of reference
1-2: principal material axes
— — direction of fiber

Figure 4.1: Local and General Axes of Reference for a Single Lamina

In order to accurately describe the yielding behavior of the orthotropic metal matrix
composite a form for the fourth order anisotropic yield tensor M is shown here. This yield
tensor has been dervied to satisfy certain criteria typical to metal matrix composites. It
has been observed from experiments that the shear strength of anisotropic materials is in-
dependent of the axial yield strength of the material. Hence it is necessary to have three
additional shear strength parameters in addition to the three principal axial strengths. Thus
six strength parameters are used to describe the yielding behavior. It is also assumed at this
stage that the axial strength in compression must be the same as that in tension.

It has also been observed that yielding in metal matrix composites is pressure dependent,
[23]. Most of the commonly used forms of anisotropic yield criteria are pressure independent
ones, [24], [25] .It is later shown that the yield criterion described here can be reduced to
the pressure independent form by imposing suitable constraints to it.

The proposed form of the fourth order anisotropic yield tensor M based on the above
conditions is as follows. It can be expressed as a function of two second order tensors a;;

and b;; as,
M = M(a,b) (4.2)
The functional form for M is defined as, |

M = Alaijan)+ Blaixaj) + Claaa;r) + D(bijbr) (4.3)
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where A, B, C and D are constants and a,; and b;; are functions of the 6 strength parameters
k; (i=1...6). Three of these parameters are directly related to the axial strengths (k1, k2, k3)
and the other three, k4, ks, kg, are shear strength parameters used to define yielding for an
anisotropic material. These parameters are measured and determined in the local coordinate
axes. a;; and b;; are given as follows.

kt 0 0
a; = 0 k& O (4.4)
| 0 0 ks
[ 0 kg ks |
b = ke 0 ke (4.5)
| ks ke 0 |

By substituting equation (4.3) into equation (4.1), the yield function equation in compo-
nent form in the local coordinate axes can be shown to be,

(A+ B+ C)(k{5}, + k353, + k363,)+
(2A)(k1k2511522 + k1k3G11533 + kokad22033)+
(2(B + C)kiky + 4DK2)5%, + (2(B + C)k1ks + 4Dk2) 13+
In the above equation the constants A, B,C, D are not material constants, but are chosen
to suit various yield criteria as outlined below.

It can be shown that (4.6) reduces to the familiar von-Mises and Tresca yield criterion
under the following combinations of the constants A,B,C and D.

1. For von—Mises (Isotropic) Criterion

A=—-3;, B=C=
2. For Tresca (Isotropic) Criterion
A=-1B=C=!
The values of these constants chosen here for this implementation are A = ~é,B =(C= %
and D = %. These values reduce the above equation to the following form.
F = 9(k2011 k3530 + k3533)
2
—§(k1k2511522 + k2k3G92533 + k1k35115‘33)
2 2
+§(k1k‘2 + kZ)&f2 3(k‘1k‘3 + k2)013 + (k2k3 + k2) 1.0 (47)

The convexity of the yield surface has been mathematically proven in [18], [17] with the only
condition that the six parameters must be positive. Since these parameters also represent
strength quantities physically, it is always positive.
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Using the equation of stress transformation between the local and global axes of reference
as follows,

0ij = dipOpedy; (4.8)

where d;; are the coefficients of the orthogonal transformation matrix, the yield equation
can be expressed in the global axes of reference as,

oijMijpow —1 = 0 (4.9)
Substituting for &;; in the yield equation (4.1) one obtains
Opelipdio MijkidimdinOmn —1 = 0 (4.10)
From the above equation M;;x can be derived to be,
Miji = Mpgrodipd;jqdirdis (4.11)

4.2.1 Comparison with Other Anisotropic Yield Surfaces

The described anisotropic yield surface is compared with two well known anisotropic criteria,
that are frequently used for metal matrix composites, namely [26] and [27] criterion for
transversely isotropic materials.

Hill’s pressure-independent anisotropic yield criterion for orthotropic criterion is ex-
pressed as,

f = F(Uyy - Uzz)2 + G(Uzz - 023)2 + H(U:c:c - Uyy)2 +
2Lo., + 2Mo?2, +2No?, — 1 (4.12)
The yield criterion described here is a pressure dependent yield criterion. In order reduce

it to a pressure independent one, deviatoric stresses along with condition that the fourth
order anisotropic tensor M must satisfy the condition,

Mg = 0 (4.13)
By applying this condition to the proposed tensor M we arrive at the condition,
k2 4+ k2 4+ k2 — kyky — kiks — kyks = 0 (4.14)

By taking the deviatoric stresses and on expanding and comparing the two yield criteria it
can be shown that,

H+G = 22—7kf
H+F = égkg
F+G = ﬁk;f
2 = g(k1k2+k2)
2M = g-(klk3+k§)
2N = %(k2k3+k§) (4.15)
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The first three terms in the above equation represent the uniaxial yield strength along
the three axes of anisotropy while the last three terms represent the corresponding shear
strengths in both criteria.

The correspondence between the Mulhern, Rogers and Spencers parameters and criterion
and the criterion described here has been shown in detail in [17, 18].

4.2.2 Numerical Simulation of the Anisotropic Yield Surface

A numerical simulation is done to evaluate the values of the parameters of the proposed
yield surface, from the experimental data obtained from boron-aluminum composite tubular
specimen having unidirectional lamina, [20] and [21]. The fibers in the laminae of the tube
are aligned parallel to the axis of the tube. The specimen is subjected to different loading
patterns by applying axial force, torque and internal pressure in order to determine the yield
surfaces in the (01; — 01) and (093 — 091) stress planes, where oy; is the stress along the fiber
direction, o, is the normal stress transverse to the fiber direction and oy, is the longitudinal
shear stress. The parameters which have been evaluated from the experimental data are
then used to generate the corresponding yield surfaces, which are then compared with those
obtained from experiments.

The orientation of the fibers along the axis of the tube is represented mathematically
be n = (1,0,0). The yield surface equation (4.1) is then reduced to component form for
transversely isotropic material case where k; = k3 to get,

2 2 2
F = §kfdf1 + §k§(0§2 +03) — §k1k2011(022 + 033)
2 2 2
—§k§022033 + §(k1k2 + k) (o}, + ols) + §(k§ + k)ogs— 1 (4.16)

If only 01, and o3; are the non-zero stresses, the above equation can be reduced to,

2

F=3

kio? + g(klkz +k)o? —1 (4.17)
A similar equation can be written in the (022 — 091) space also. The parameter k; is deter-
mined from the yield stress along the 0;; axis and k; from that along the 0,5, axis. From
the third yield stress namely along the o, axis we can then determine k4 using the above
equation. From the experimental data, the values of initial yield stress have been measured
as, o), = 87.90 M Pa, 0%, = 44.70 M Pa and o}, = 17.90 M Pa.

Using the above data the values for k;, k; and k4 are evaluated to be,

_ 1
° k= 41.47

- _1
o k= 21.09

_ 1
° ki =g

The yield surfaces that is represented by this model is generated using the above param-
eter values. Figure 4.2 shows the model generated surfaces along with the points obtained
from experimental data, for initial yield surfaces in this stress space.
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Figure 4.2 shows why the necessity to have additional parameters to represent the non-
conformal effect of shear strength. The figure shows the curves corresponding to a model
having only the parameters k;, and k,. It is observed that although the yielding along the
axial directions are correctly simulated, the shear strength is overestimated. The introduc-
tion of the shear strength parameter k; corrects this deficiency and allows for the correct
representation of the observed phenomena. The parameter values for subsequent yield sur-
faces have also been computed from the experimental data available. Figure 4.3 shows the
model simulated yield surfaces as compared to the experimental subsequent yield surfaces.

40

100

AT Shear Yield = 21.3 MPa
et ®  Expor
y WD P - xperimental
- Proposed Model ( k1k2 )

—flll— Proposed Model ( k1k2k4 )

Si1( VPa )

Figure 4.2: Comparison of Initial Yield Surface in 0y; — 012 space

4.3 Continuum Cyclic Plasticity Model

Using the anisotropic yield surface outlined above, a cyclic plasticity model is described
here, for the metal matrix composite treated as a continuum. The plasticity model uses
a kinematic hardening rule along with a non-associative flow rule. These along with the
constitutive equations are described below.

4.3.1 Elastic Behavior

The elastic behavior of the composite material, treated as a homogeneous continuum with
transversely isotropic properties has been defined in [28] and is used here. The linear con-
stitutive relation is expressed as

oi;j = Cijuek (4.18)

where C is the fourth order elastic stiffness tensor relating the symmetric second order
tensors o and € of stress and strain respectively. For a trasnversely isotropic material the
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Figure 4.3: Comparison of Subsequent Yield Surfaces in o33 — 012 space

fourth order elastic stiffness tensor is given as follows.

Cijw = Kitijjtu+ Eljla + QmEf’jk, + 2pE,, (4.19)
where,

t; = my; + 21/1”' (420)
L = nm; (4.21)
mi; = Oy = nin; (4.22)

1
Eln = 5 [mixmg + mjema — migmp] (4.23)

1
E?jkl = 3 [malie + malsx + mjla + mjema] (4.24)

and K is the plane-strain bulk modulus, m is the transverse shear modulus, p is the axial
shear modulus and E and v are the Young’s Modulus and Poisson’s ratio respectively, when
the material is loaded in the fiber direction. For a transversely isotropic material the plane-
strain bulk modulus can be defined in terms of the other four elastic constants.

4.3.2 Kinematic Hardening
Kinematic hardening is accounted for by modifying the form of the yield surface as follows.
f = (0','_7‘ - a,'j)MijkI(O'kl - akl) -1.0 (4.25)

The evolution equation for the backstress is based on the Phillips rule and can be expressed

as follows.
(4.26)

&ij = ||6sl|li;

where [;; is a unit tensor along the stress rate direction.
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4.3.3 Non Associative Flow Rule

It is observed that the determination of plastic strains, for any anisotropic material in gen-
eral, and an MMC in particular must adopt a non-associative flow rule. This has been
demonstrated experimentally [20], [21]. They have also observed that the direction of plas-
tic strains tend to be more inclined towards the shear direction in a combined transverse
tension-shear loading situation. Also plastic inextensibility along the fiber direction is an
accepted MMC behavior.

A plastic potential function is defined here, the form of which is based on the proposed
yield function. To determine the plastic strain increments (6:']) a non- associative flow rule
is used as follows,

M . 0G ’
€; = Aaaij (4.27)
where G is the plastic potential function. The potential function is defined here as a function
of the yield function g and the constrained yield function as follows,

G = wf+(10-w)g, 0<w<1.0 (4.28)

The constrained yield function g is defined such that it satisfies the condition of plastic
inextensibility along the direction of fiber defined by 5. The function g is defined using the
fourth order anisotropic yield tensor M and a constrained stress term r;; such that,

g = r,'jM,'jkz'l‘kl -1 (4.29)

The constraint that is introduced in the stress term is that the plastic strain increment is
independent of the component of stress along a specified direction ( defined here by 7;) .
Following the procedure outlined in [29] the constraint is incorporated into the stress term
as follows,

ri; = o —Tmn; (4-30)

where T'n;n; is the reaction to an inextensibility constraint along the direction 7.
Based on the flow rule, one can define a second order tensor representing the direction
of plastic strains as follows.

ng; = wn;-fj + (10 - W)n?j (431)

where w is a non-associativity parameter that can be determined from experiments as ex-
plained in [17] and nf; and nfj are unit normals to the yield and potential surfaces respectively.

4.3.4 Evaluation of Elasto-Plastic Stiffness Matrix

The fourth order elasto-plastic stiffness matrix for the MMC treated as a continuum is
determined by incorporating all the procedures outlined above. Small deformations as well
as rate independency of plastic strains is assumed. This allows one to use an additive
decomposition of the incremental strain tensor de;; such that,

dei; = de;; + de;; (4.32)
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where de:»j is the elastic part and de:j is the plastic part of the strain tensor. The incremental
stress-strain relations can be expressed as follows.

doi; = Cijnde, (4.33)
= Ciju(den — dey) (4.34)
Using equation (4.27) for the plastic strain part we can write the above equation as follows.
oi; = Ciuldey — dgankz) (4.35)
Equation (4.35) may also be expressed as follows.
6i; = Cinén — Cijunuo/H (4.36)
Taking the inner product of both sides with n;; one obtains,
oini; = Cijunijén — Cijunijnuo/H (4.37)
= & (4.38)
Or,
& (1 + M) = Cijumijén (4.39)
H
From the above equation one can express ¢ as follows.
S = st (440

Hence the expression for plastic strains using equation (34) can be written explicitly as
follows.

" Cabcdnabdfcd
o g 4.41
5T H Cogranipgnivs (4.41)

Substituting this in the equation for the incremental stress-strain relations one obtains,

CabeaNapdecd
do;; = Cin |dew — 4.42
g gkl | Q€K H+ Cpqrsnpansnkl ( )
Cijk1CabedNabniidecd
= Cinden — — 4.43
! H + Cpqrsnpans ( )
Interchanging the indices k! with cd in the second term of the above equation one obtains,
CijedCabkiNapNcadek
dO’i' = C," dey — . s 4.44
i jklGER] H 1 Coparnarins (4.44)
or,
dO’ij = DiEjﬁdﬁkl (445)
where Dg,ﬁ is the elasto-plastic stiffness of the material and is expressed as follows.
CijeaneaCabkifab
Dff = Ciju— oo 4.46
ikl LTI (4.46)
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4.3.5 Anisotropic Plastic Modulus

For initially anisotropic or orthotropic materials the asymptotic value of the plastic modulus
H need not and in most cases will not be the same for all points on the yield surface.
For materials where we assume the behavior in tension and compression to be similar, it is
reasonable to assume that at mirror image points of the yield surface , this asymptotic value
of the plastic modulus is the same.

@21
/’, (G—a) N ‘C
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A ,'
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OO . Subsequent Bounding Surface

e}
Initial Yield Surface A 22

Figure 4.4: Illustration to Explain Plastic Modulus Determination for an Anisotropic Mate-
rial

In Figure 4.4, which shows the yield and the bounding surfaces in the o2 — o015 stress
space, points A and B are the location of the stress points for initial yielding for loading
in the 093 and oy, respectively. From the two uniaxial stress-strain behaviors, it is observed
that the plastic modulus and hence the values of the three parameters that are required to
determine the plastic modulus, are different for loading paths along the two directions.

A modified form of the bounding surface model is used to model the behavior of the
composite material under cyclic loading situations. The main idea here is the determination
of the plastic modulus H. The observed values of the parameters involved in the determi- .
nation of the plastic modulus are different along different loading directions. This could be
modelled by using tensors in the form of second order tensors such as §{7,h;; and H7;. These
are then converted to a scalar valued form by taking the inner product of these tensors with
another second order tensor p;; and representing the result as follows.

B = Hyp; (4.47)
72 = hijpij (4.48)
(Sm = (S;;Lp,‘j (4.49)

The expression for the plastic modulus can then be expressed as

H = H*+hé/(6™=9) (4.50)
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where § is the distance between the stress point on the yield surface and the image point on
the bounding surface. In this model p;; is chosen to be the same direction as l;;. Further
details of this selection is presented in [30].

The initial bounding surface used here is an identical expansion of the initial yield surface.
The bounding surface is expressed as

F* (0%, B @ij, bij) = 0 (4.51)

where af?j is the image point on the bounding surface and f;; is its center. The evolution of
the center of the bounding surface in the stress space as loading continues is related to the
evolution of backstress for the yield surface as well the relative distance between the stress
point and the image point.

4.3.6 Experimental Comparison and Discussions

From the data presented in the paper in [21], the following values for the bounding surface
have been evaluated. ab, = 196.0 MPa, 0%, = 91.5 MPa and o3, = 34.0 MPa. This results in
the computed values of the initial bounding surface parameters as k; = 0.0108, k, = 0.0232
and ks = 0.0323. The values for ks, ks and ke are not needed here and have been taken to
be zero.

The numerical evaluation of the plastic modulus constants is the next step in this pro-
cess, i.e. the evaluation of H}; and h,;. Different values of these constants are evaluated from
experimental results of the uniaxial stress-plastic strain curves along different stress direc-
tions. The values of these constants have been evaluated as follows. H}, = 1,600,000MPa
, H3, = 12000MPa and H;, = 6000MPa and the values of the other parameter h;; are
hii = 9,650,000, hyy = 90,000 and hy; = 40,000MPa respectively. The other values of this
tensor are assumed to be zero.

In order to incorporate the non-associativity of the flow rule that has been built into the
model, the value of w has been chosen, by trial and error, as w = 0.5.

Figure 4.5 shows the comparison between between experimentally obtained and model
generated g — €22” curve and Figure 4.6 shows the same of oy; — 26'1'2. From the comparison
of the experimental results in [20], [21] and the model generated stress-strain curves, a
reasonably good correlation is observed.

The tendency for ratchetting to occur for cyclic loading, for 5 cycles of loading path has
also been observed. But the tendency to stabilize have been different for the experimental
and model predicted results. This is because a drastic degradation of elastic modulus has
been observed in the experimental results.

A significant feature of this model is the usage of a non-associative flow rule. In order
to demonstrate its significance, the model is run with the same loading situation, but with
w = 1.0, which results in the usage of an associated flow rule. Figures 4.7 & 4.8 show the
comparison of model and experimental results for this case. For a pure associative flow rule
(w = 1.0) it is seen that plastic strains €,, have been overpredicted. A factor of w = 0.5
which incorporated non-associativity into the model has been successfully used to predict
the plastic strains reasonably in this direction.

Results are also shown for one simulated loading situation. Figure 4.9 shows the results
for radial cyclic loading in the g93 — 02; stress space. From these results it is observed that
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Figure 4.5: Transverse Stress-Plastic Strain Comparison for Non-Associative Flow Rule

the model is able to predict different behavior in different stress spaces during the loading
process.

4.3.7 Comparison with Other Existing Models

The plastic strains predicted by the model presented here has been compared with those
predicted by two micromechanical models, namely the Periodic Hexagonal Array (PHA)
model, [31], and the self-consistent scheme,[26] and [32] using the Mori-Tanaka averaging
scheme for the evaluation of the concentration factors, [33]. The data for the self-consistent
and the PHA model have been taken from the paper by Lagoudas, [33].

Figure 4.6 shows the comparison of the shear stress-plastic shear strain curves generated
by the above two mentioned models and the presented model along with those from the
experimental data. It is seen that while the Mori-Tanaka and the PHA model results un-
derpredict the plastic strains, the presented model using the non-associative flow rule comes
closer in its prediction.

4.4 Damage
4.4.1 Description of Proposed Damage Models

In this work the metal matrix composite is assumed to consist of an elasto-plastic matrix
with continuous aligned uni-directional elastic fibers. The composite system is restricted
to small deformations with small strains. Two different approaches to model the damage
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Figure 4.6: Shear Stress-Plastic Strain Comparison for Non-associative Flow Rule

behavior are presented here in this work.

In both these approaches the effective configuration is defined as a fictitious state with
all damage removed, and the damaged configuration is the actual state of the material.

In the first approach the MMC is modeled using a ‘Continuum Damage’ model, wherein
the MMC is treated as a continuum . The elasto-plastic behavior of the continuum is modeled
using the cyclic plasticity model described earlier, applied to the effective continuum material
and the damage transformation of this fictitious undamaged continuum to the damaged
configuration is then obtained using the damage model. The damaged configuration is
termed as C whereas the fictitious undamaged configuration is termed as C.

In the second approach the MMC is treated as a micromechanical combination of an
‘in-situ’ plastic matrix and an elastic fiber. It is assumed that the in-situ behavior of the
matrix material in the presence of the dense fibers is different from what it would be in the
absence of fibers. Here only the in situ plasticity behavior of the matrix is characterized by
the continuum cyclic-plasticity-composite model shown earlier. The initial undamaged and
undeformed configuration of the composite material is denoted by C,, and the damaged and
deformed configuration after the body is subjected to a set of external agencies, is denoted by
C. The fictitious configuration, C, of the composite system is obtained from C by removing
all the damage. C is termed as the effective configuration which is based on the effective
stress concept, [1]. The sub configurations of C of the matrix and fibers are denoted by C™
and C/ respectively. Figure 4.10 shows the steps involved in this development.

The equations of continuum damage mechanics are then applied to the overall undamaged
configuration C in order to obtain the effective damaged quantities in the overall configura-
tion C.
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Figure 4.7: Shear Stress-Plastic Strain Comparison for Associative Flow Rule

The primary constitutive relationship in the effective configuration in incremental form
can be expressed as,

0;'1‘]‘ = Dijkztékl (4.52)

4.4.2 Damage Effect Tensor

The damage of the material is quantified through the fourth-order damage effect tensor M.
This tensor reflects all kinds of damage such as matrix cracking and fiber breakage damage
between the matrix and the fiber. This overall damage effect tensor M can be related to the
local damage effect tensors such as

M = (&"M™:B™ +& M/ : BY) (4.53)
where M™ and M7 are the respective local damage effect tensors reflecting matrix damage

and fiber damage [7]. A linear transformation is assumed between the Cauchy stress tensors
such that

6 = M:o (4.54)

[3] has shown that M can be represented by a 6x6 matrix as a function of a symmetric
second order tensor ¢ such that

M] = [M(L; - ¢)] (4.55)

where I is the second-rank identity tensor. The effective Cauchy stress need not be symmet-
ric or frame invariant under the given transformation. However, once the effective Cauchy
stress is symmetrized, it can be shown that it satisfies the frame invariance principle [22].
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Figure 4.8: Transverse Stress-Plastic Strain Comparison for Associative Flow Rule

4.4.3 Anisotropic Damage Criterion

The damage criterion g is given in terms of the tensorial damage hardening parameter h
and the generalized thermodynamic force Y conjugate to the damage tensor ¢ and a term «
which is defined in the thermodynamic force space such that

9 = (Y= Pyr: Yu—ym)—1=0 (4.56)
The fourth order tensor P is expressed in terms of the second order tensor h such that
Pju = hj'hy! (4.57)

A new and simplified form of the tensor k is given in terms of the second order tensor u, V
and ¢ as follows

hij = (wij + Vi) (4.58)

The tensors u and V are scalar forms of isotropic materials originally proposed in [34] The
tensors are given by '

ye(£) o 0
u = 0 g (x;) 0 (4.59)
0 0 Jag (A—)
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and
AI’U% 0 0
V = 0 A 0 (4.60)
0 0 /\3’0%

The material parameters A;,A; and A; are Lame’s constants for anisotropic materials and are
related to the elasticity tensor E for an orthotropic material expressed by the 6 x 6 matrix,
[7). The material parameters v;,v; and v3 define the initial threshold against damage for
the orthotropic material. These are obtained from the constraint that the onset of damage
corresponds to the stress level at which virgin material starts exhibiting nonlinearity. The
scalar damage hardening parameter « is given by

= -Y: ¢d .
K /(: ¢dt (4.61)

Finally the material parameters r and q are obtained by comparing theory with experimental
results.

4.4.4 Evolution of 4 and é

A new term 4 has been introduced nere in the definition of the damage criterion g in equation
(4.56). This term is analogous to the backstress term in the stress-space yield criterion.
It represents the translation of the damage surface as loading progress akin to kinematic
hardening.
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Figure 4.10: Schematic Diagram Depicting the Micromechanical Model

The evolution of the term v in the anisotropic damage criterion equation is needed in
order to account for the motion of the damage surface in the Y space. This is dependent on
the evolution of damage itself. Hence it can be expressed mathematically as follows,

o= ¢ (4.62)

Since Y is negative 4 too has to be negative. It has been found that it is suitable to adopt
a value of —1 for the value of c. The negative sign is adopted because Y itself is a negative
quantity as defined in equation (4.65)

The evolution of the damage variable ¢ is defined as follows:

(4.63)

where g is the function representing the damage criterion.
The generalized thermodynamic free energy Y is assumed to be a function of the elastic-
" component of the strain tensor € and the damage tensor ¢, or the stress o and ¢

Y = Y(e,¢) or Y =Y(0,9) (4.64)
Making use of the evolution equations for Y
y aY;] . 1_7
Y, = do. o™ 0¢ L du (4.65)

Making use of the energy equivalence principle, one obtains a relation between the dam-
aged elasticity tensor E and the effective undamaged elasticity tensor E such that [22]

E;l‘}‘l.kl((b) = Muvmn(¢)Euququl(¢) (466)
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4.5 Damage-Plasticity Constitutive Model

The stiffness tensor D for the damaged material now derived for isothermal conditions and
in the absence of rate dependent effects. Making use of the incremental form of equation
(4.54) one obtains resulting elastoplastic stiffness relation in the damaged configuration is
obtained as follows:

6 = D:é¢ (4.67)
where
D = 0':D:M? (4.68)

where O is a fourth order tensor that can be derived based on the evolution equations for
damage and is outlined in detail in [7] for the case of uniaxial loading. The effective stiffness
tensor D maybe obtained from either a continuum approach or a micromechanical approach.
These approaches are outlined below.

C,, —¢,, Curve
Cyclic Loading
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Figure 4.11: Evolution of Damage Parameter ¢,; with Transverse Stress

4.5.1 Effective Stiffness Tensor D for Continuum Model

For the continuum-damage model the effective undamaged elasto-plastic relationship is given
by the stiffness generated by the cyclic plasticity model. No modifications are made at this
stage. D is the effective undamaged elasto-plastic stiffness and is given by,

-~ _ & (E:n)(n:E)
b =F H+(n:E:n)

(4.69)

No other computations are necessary.
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4.5.2 Effective Stiffness Tensor for Micromechanical Model

The stiffness tensor D for the damaged material now derived for isothermal conditions and
in the absence of rate dependent effects. Making use of the incremental form of equation
(4.54) one obtains

§ = M:o+M:6 (4.70)
Through the additive decomposition of the effective strain rate one obtains
€ = M1ty Mie (4.71)

Making use of equation (4.63) the rates of the damage effect tensor maybe expressed as
follows

: oM;; )
M = —Bgﬁquan (4.72)
P
= QijkimnOmn (4.73)
and the inverse of M is given by,
e M
Mijl:l 0(; Togmn
Py
= RijkimnOmn (4.74)

The elasto-plastic stiffness matrix in the undamaged configuration is given by equation
(4.52). Making use of equations (4.71), (4.73), (4.74) and (4.52) the resulting elastoplastic
stiffness relation in the damaged configuration is obtained as follows:

o = D:é (4.75)
where the damaged elasto-plastic stiffness is given by,
D = O0':D: M (4.76)
and

Oiji = QijmnkiTmn + Mijki — Dijmn Rmnpgkt Epgab (4.77)

In the above equation D is the effective undamaged elasto-plastic stiffness of the composite
and can be expressed as,

D = &Dm™: A"+ ES: AT (4.78)

In the case of no damage, both tensors @ and R reduce to zero and M becomes a fourth
order identity tensor.
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Figure 4.12: Shear Stress-Strain for Continuum Damage and Pure Plasticity Models

4.5.3 Continuum Damage Model Results

The same loading that was studied earlier, and used in the experimental work of Nigam
et al.(1993) has been used here in this work. The damage parameters found suitable for
this material were ¢ = 1.0 and r = 7.0. This effectively makes it dependent only on one
parameter. Figures 4.12, 4.14, 4.13, 4.15 show the results of this generation for the stress-
strain comparison in the transverse and shear directions. These curves compare the cyclic-
plasticity model with that of the damage-plasticity model. It can be seen that the strains
predicted by the damage model are higher than that of the pure plasticity case. It can also
be seen that during the unloading-reloading situation, when reloading takes place even in
the elastic range, the damage criterion is exceeded, and hence the elastic-stiffness is reduced.
This can be clearly seen in the two lines of different inclinations in Figures 4.13 and 4.15. As
seen in Figures 4.13 and 4.15 which depict the stress-plastic strain relationships in the shear
and transverse directions respectively, due to successive reduction in the elastic stiffness,
the plastic strains are also affected hence resulting in a higher prediction of plastic strain.
Although this model assumes a decoupling between damage and plasticity situations in
modeling the behavior, there is an inherent coupling that is present.

Figure 4.11 shows the evolution of the damage parameter ¢ with stress in the transverse
direction under a cyclic loading type of situation. One apparent behavior that is observed
due to the nature of these curves is that as stress is increased, the same stress increment tends
to produce a higher amount of damage. Upon unloading no significant change in damage
is observed, and evolution of damage upon reloading takes place at a lower stress level for
successive loading cases. Another behavior observed is that under constant load cycling, the
amount of damage per cycle is higher as the number of times the load is applied increases.
These behaviors observed are reasonable with what one would expect in reality.

The micromechanical model results are being developed and the results for them are
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presented elsewhere.
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Figure 4.13: Shear Stress-Plastic Strain for Continuum Damage and Pure Plasticity Models
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Figure 4.14: Transverse Stress-Strain for Continuum Damage and Pure Plasticity Models
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Appendix

FORTRAN CODING OF SUBROUTINES
TO CALCULATE DAMAGE ELASO-PLASTIC
STIFFNESS D;;u
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MATHOD

aaoaoQ

SUBROUTINE MATMOD(ELNUM,INTGPN ,MATEUM,ICODE, ICRK)
IMPLICIT REAL#8 (A-H,0-2)

INTEGER ELNUM

CHARACTER#1 ICRK

COMMON/INPUTF/MATYPE(10)

I=MATYPE (MATNUM)
IF (1.EQ.1) THEN

CALL ODCOM(ICODE,ELNUM,INTGPN,ICRK)
ELSE IF(I.EQ.2) THEN

CALL LDCOM(ICODE,ELNUM, INTGPN,ICRK)
ELSE

WRITE (10UT,100) I

STOP
END IF

RETURN
100 FORMAT (/1X,’INVALID MATERIAL TYPE(’,I3,’) SPECIFIED’)
END

aacaoaaaaaaoaaan

SUBROUTINE ODCOM(ICODE,ELNUM,IETGPN,ICRK)
INTEGER ELNUM
CHARACTER#*1 ICRK

c
IF (ICODE.EQ.0) THENW
CALL OCALSTF(ELNUM,INTGPN)
ELSE
CALL OSTRDAM(ELEUM,INTGPN,ICRK)
END IF
c
RETURN
END
C
C OMEDAM
C

SUBROUTINE OMEDAM

PROGRAMNM:

PROGRAM ’MEDAM’ IS THE CONTROL UNIT FOR CALCULATION OF THE
ELASTIC STRESS~-STRAIN STIFFNESS MATRIX INCLUDIEG THE
EFFECT OF DAMAGE.

[eNoRoNeRoRoNe NoRel
bt bt bt b b b bt
R R R R N

IMPLICIT REAL#*8 (A-H,0-2)

INTEGER ELNUM

CHARACTER#*48 CSTRE,CSTRS,CASTRS ,CSTRM,CPHI ,CDPHI ,CCERT
CHARACTER*8 CHK,CYY

CHARACTER*1 CDMG,ICRK

COMMOK/DEVICE/LDEV1 ,LDEV2,LDEV3,LDEV4,LDEV,LDEVST
COMMOR/LAYTP1/NP ,NTP

COMMON/ELSTR2/STRS(6)

COMMON/MATER1/DEP(6,6)

COMMOE/INPUT1/THICK ,NPLY

COMMON/INPUT2/MATL(10) ,DMGPRM(27)
COMMON/INPUT3/DEGRE(10) ,PLYTHK(10)
COMMON/CONTR1/INCREM ,NIT

COMMON /MEDAM1/ESMB(6,6) ,ESFB(6,6)
COMMOE /MEDAM2/ECMB(6,6) ,ECFB(6,6)
COMMOB/AFECORB1/AFE(6,6)
COMMON/AMECON1/AME(6,6)
COMMOK/BFECON1/BFE(6,6)
COMMDE/BMECOK1/BME(6,6)
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DIMENSION STRAIN(6),DE(6),TDE(6)

DIMENSION STRESS(6),TSTRS(6),DS(6),TDS(6)
DIMEESION AVGSTR(6) ,BTDS(6)

DIMEESION STRSM(6)
DIMEESION DSM(6) ,DSTREM(6)

DINENSICN EPLY(6,6) ,EPLYB(6,6) ,DEPLY(6,6),GRS(6,6)
DIMENSION ECB(6,6) ,DPLY(6,6) ,PSMB(6,6)

DIMEESIOF DUMMY(6) ,DUMMY1(6) ,DUMMY2(6)

DIMEESICN FS(6) ,CENT(6)

DIMENSION PHI(6),DPHI(6),DM(6,6),DMP(6,6,6)
DIBENSION Y(6),HI(6)

DIMEESION MCRACK(5)

DIMENSION DDSM(6) ,TSTRSM(6),DDS(6),TDDS (6) ,DDE(6) ,TDDE(6)
DIMENSION BTDDS(6) ,DDPHI(6)

EQUIVALENCE (CSTRN,STRAIN),(CASTRS,AVGSTR),(CSTRM,STRSM),
$(CPHI ,PHI), (CDPHI ,DPHI) , (CHK ,HK), (CSTRS,STRESS), (CYY,YY)

aQaao

aaQaa

aQaaa

Qoo

aaaQ

acaQaaoaoaaoaaoaaaaa

10

ENTRY OSTRDAM
ENTRY OSTRDAM(ELNUM,INTGPE,ICRK)

IF (INCREM.GT.1) THEN
READ(LDEVi,11) CSTRE

ELSE
Do 10 I=1,6
STRAIN(I)=0.DO

END IF

CALCULATION OF THE STRAIN INCREMENT FOR LAMIBATE

CALL CALSTRN(DE,STRAIN)
WRITE(LDEV2,11) CSTRN
GET THE MATERIAL PARAMETERS

CMO=MATL (1)
CFO=MATL(2)

EM=MATL(3)

EF=NATL(4)

UM=MATL(5)

UF=BATL(6)

GM=EM/ (2.DO* (1 .DO+UM))
GF=EF/ (2.D0* (1 .DO+UF))

GET THE YIELD PARAMETERS

SY=MATL(7)
B=BATL(8)

GET THE DAMAGE PARAMETERS

R1=DMGPRM(1)
R2=DNGPRM(2)
R3=DMGPRM(3)
Q1=DMGPRM(4)
§2=DMGPRM(5)
Q3=DMGPRM(6)
V1=DMGPRM(7)
V2=DMGPRM(8)
V3=DMGPRM(9)

CALCULATION OF THE STRESS INCREMENT & TOTAL STRESS OF EACH PLY

TYPE OF LAMINATE
NTP=1 ; SINGLE LAMINAE
NTP=2 ; EVEN NUMBER OF LAMINAE
NTP=3 ; ODD NUMBER OF LAMINAE

D0 100 KP=1,NP
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IF (INCREM.GT.1) THEN
READ(LDEV1,22) CASTRS,CYY,CPHI,CDPHI,CSTRM,CCENT,CHK,CDMG

ELSE
DO 110 I=1,6
AVGSTR(I)=0.D0
PHI(I)=0.DO
DPHI(I)=0.DO0
CENT(I)=0.D0

110  STRSM(I)=0.DO

HK=0.DO
YY=0.DO
CDMG=>

EED IF

DO 120 I=1,6
120 TSTRSM(I)=STRSM(I)

C --- GET THE FIBER DIRECTION OF PLY AND THICKEESS

THETA=DEGRE (KP)
THKK=PLYTHK (KP)
SCALE=10.D0

C --- COMPUTATION A TRIAL ELASTIC STRESS OF MATRIX

CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECON(CMO,CFO0)
CALL PLYSTF(EPLY,ESMB,ESFB,CNO,CFO)
IF (CDMG.EQ.’Y’) THEN
CALL DMAGE2(DM,DMP,PHI)
CALL ELDAMG(DEPLY,DM,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL CONVER(GRS,DEPLY)
ELSE
CALL TRNSTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
END IF
CALL CALSTRS(DUMMY1,DUMMY2,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
CALL TRESTR(DUMMY1,DUMMY2,THETA)
IF (CDMG.EQ.’Y’) THEN
CALL EFECT3(BTDS,TDS,DMP,DM,DPHI ,DUMMY1)
CALL LOSTRS(DSM,BME,BTDS)
ELSE
CALL LOSTRS(DSM,BME,TDS)
ERD IF
CALL TRESTE(TDE,DE,THETA)
CALL LOSTRS(DSTREM,AME,TDE)

CALL UPDATE(TSTRSM,DSM)

IF (CDMG.EQ.’ ’) THEN
IF (YY.GT.0.9) THEN
CALL AECON(CMO,CFO,EM,GN,UM)
CALL BECON(CMO,CFO)
CALL ELPLD(PSMB,ESMB,STRSM,CENT,B)
CALL APCON (PSMB,CMO,CFO,EM,EM,GM,GHM,UM)
CALL BPCON (PSMB,CMO,CF0)
CALL PLYSTF(EPLY,PSMB,ESFB,CNO,CF0)
CALL TRESTF(EPLY,THETA)
CALL COEVER(GRS,EPLY)
CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
CALL TRNSTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DSM,BME,TDS)
CALL UPDATE(STRSM,DSM)
CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK,THICK)
ELSE
CALL YIELD(FY,TSTRSM,CENT,SY)
IF (FY.LT.0.0) THER
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECODN(CMO,CFO)
CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO)
CALL TRESTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
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125

130

CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DSM,BME,TDS)
CALL UPDATE(STRSM,DSM)
CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK, THICK)
ELSE
YY=1.DO
NSBI=INT(SCALE+0.1)
DD 125 L=1,6
DDE(L)=DE(L) /SCALE
CALL AECON(CMO,CFO,EM,GM,UN)
CALL BECON(CMO,CF0)
CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO0)
CALL TRESTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)
CALL TRESTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)
CALL UPDATE(STRSM,DDSM)
b0 130 I=1,NSBI-1
IF (IYY.EQ.10) THER
FY=1.0
ELSE
CALL YIELD(FY,STRSM,CENT,SY)
END IF
IF (FY.LT.0.0) THEN
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECON(CMO,CFO)
CALL PLYSTF(EPLY ,ESMB,ESFB,CMO,CFO0)
CALL TRNSTF(EPLY,THETA)
CALL COEVER(GRS,EPLY)
CALL CALSTRS(DUMMY,AVGSTR,DDS,GRS,DDE)
CALL TRNSTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSH,BME,TDDS)
CALL UPDATE(STRSM,DDSM)
ELSE
IYY=10
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECON(CMO,CFO)
CALL ELPLD(PSMB,ESMB,STRSM,CENT,B)
CALL APCON (PSMB,CMO,CFO,EM,EM,GM,GM,UN)
CALL BPCOE(PSMB,CMO,CFO0)
CALL PLYSTF(EPLY,PSMB,ESFB,CN0,CFO)
CALL TRESTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)
CALL TRNSTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)
CALL UPDATE(STRSM,DDSM)
END IF
CONTINUE
CALL GRSSTF(DEP,GRS ,NTP,KP NP, THKK,THICK)
EED IF
END IF

CALL DMAGE2(DM,DMP,PHI)
IF (YY.GT.0.9) THEN
CALL AECON (CMO,CFO,EM,GM,UM)
CALL BECON(CMO,CFO)
CALL ELPLD(PSMB,ESMB,STRSM,CENT,B)
CALL APCON(PSMB,CMO,CFO,EM ,EM,GM,GM,UM)
CALL BPCON(PSMB,CMO,CFO)
CALL PLYSTF(EPLY,PSMB,ESFB,CMO,CFO)
CALL ELDAMG(DEPLY,DM,EPLY)
CALL DELPLD(DPLY,DEPLY,ECB,DM,DMP,STTRS)
CALL TRNSTF(DPLY,THETA)
CALL CONVER(GRS,DPLY)
CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL EFECT3(BTDS,TDS,DMP,DM,DPHI ,DUMMY1)
CALL LOSTRS(DSM,BME,BTDS)
CALL UPDATE(STRSM,DSM)
CALL GRSSTF(DEP,GRS,NTP,KP NP, THKK,THICK)
ELSE
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135

140

CALL YIELD(FY,TSTRSM,CENT,SY)
IF (FY.LT.0.0) THEE

CALL AECON(CMO,CFO,EM,GN,UM)

CALL BECON(CMO,CFO0)

CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO)

CALL ELDAMG(DEPLY,DM,EPLY)

CALL TRESTF(DEPLY,THETA)

CALL CONVER(GRS,DEPLY)

CALL CALSTRS (DUMMY,AVGSTR,DS,GRS,DE)

CALL TRNSTR(TDS,DS,THETA)

CALL TRESTR(TSTRS,AVGSTR,THETA)

CALL EFECT3(BTDS,TDS,DMP,DM,DPHI,DUMMY1)

CALL LOSTRS(DSM,BME,BTDS)

CALL UPDATE (STRSM,DSM)

CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK, THICK)
ELSE

YY=1.DO

¥SBI=INT(SCALE+0.1)

DO 135 L=1,6

DDE(L)=DE(L) /SCALE

CALL AECON(CMO,CFO,EM,GM,UN)

CALL BECOE(CMO,CFO)

CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO0)

CALL ELDAMG(DEPLY,DM,EPLY)

CALL TRESTF(DEPLY,THETA)

CALL COBVER(GRS,DEPLY)

CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)

CALL TRNSTR(TDDS,DDS,THETA)

CALL TRNSTR(TSTRS,AVGSTR,THETA)

CALL EFECT3(BTDDS,TDDS,DMP,DM,DPHI ,DUMMY1)

CALL LOSTRS(DDSM,BME,BTDDS)

CALL UPDATE(STRSM,DDSM)

DO 140 I=1,ESBI-1

IF (IYY.EQ.10) THEK

FY=1.0
ELSE
CALL YIELD(FY,STRSM,CEKT,SY)

END IF

IF (FY.LT.0.0) THEE

CALL AECON(CMO,CFO,EM,GM,UM)

CALL BECOE(CMO,CFO0)

CALL PLYSTF (EPLY,ESMB,ESFB,CMO,CFO)

CALL ELDAMG(DEPLY,DM,EPLY)

CALL TRESTF(DEPLY,THETA)

CALL CONVER(GRS,DEPLY)

CALL CALSTRS(DUMMY,AVGSTR,DDS,GRS,DDE)

CALL TRESTR(TDDS,DDS,THETA)

CALL TRNSTR(TSTRS,AVGSTR,THETA)

CALL EFECT3(BTDDS,TDDS,DMP,DM,DPHI,DUMMY1)

CALL LOSTRS (DDSM,BME,BTDDS)

CALL UPDATE(STRSM,DDSM)

ELSE

1YY=10

CALL AECON(CMO,CFO,EM,GM,UM)

CALL BECON(CMO,CFO0)

CALL ELPLD(PSMB,ESMB,STRSM,CENT,B)

CALL APCON(PSMB,CMO,CFO,EM,EM,GM,GM,UM)

CALL BPCOK(PSMB,CMO,CF0)

CALL PLYSTF(EPLY,PSMB,ESFB,CMO,CFO)

CALL ELDAMG(DEPLY,DM,EPLY)

CALL DELPLD(DPLY,DEPLY,ECB,DM,DMP,TSTRS)

CALL TRESTF(DPLY,THETA)

CALL CONVER(GRS,DPLY)

CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)

CALL TRNSTR(TDDS,DDS,THETA)

CALL TRNSTR(TSTRS,AVGSTR,THETA)

CALL EFECT3(BTDDS,TDDS,DMP,DM,DPHI ,DUMMY1)

CALL LOSTRS (DDSM,BME,BTDDS)

CALL UPDATE(STRSM,DDSM)

END IF

CONTINUE

CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK, THICK)
END IF

EED IF

UPDATE BACK-STRESS
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IF (YY.GT.0.9) THEN
CALL FDER(FS,STRSM,CENT)
CALL QSCALAR(Q,ESMB,STRSM,CENT,B)
CALL LAMUDA(ALAM,ESMB,FS,DSTREN,Q)
CALL USCALAR(UT,STRSM,CENT,ALAM,B)
CALL CENTER(CENT,STRSM,UT)

END IF

| UPDATE DMAGE OF EACH PLY |

aaaaan

IF(CDMG.EE. ’F’) THEN

aQ

CALL DMAGE2(DM,DMP,PHI)
CALL DMGFRC(Y,DM,DMP,TSTRS,ECB)

U1=EPLYB(1,1)-2.DO*EPLYB(4,4)
U2=EPLYB(2,2)-2.DO*EPLYB(5,5)
U3=EPLYB(3,3)-2.DO*EPLYB(6,6)

CALL DMGHAR(HI,A1,A2,A3,B1,B2,B3,PHI, HK,R1,R2,R3,Q1,Q2,Q3
$,01,0U2,03,V1,V2,V3)

CALL DMGCRT(GCRT,Y,HI)

IF (GCRT.GE.1.DO) THEN

CDNG=’Y?

CALL CALDMG(PHI,DPHI,TSTRS,TDS,ECB,HK,Y,HI,A1,A2,A3,B1,B2,B3
$,CDMG, 1)

ERD IF

EED IF

IF (CDMG.EQ.’F’) THEN
D0 515 J=1,3
515  PHI(J)=0.90
NCRACK (KP)=1
WRITE(6,777) ELNUM,INTGPN,KP,THETA
777 FORMAT(2X,’LAMINA CRACK’,2X,I5,2X,I2,2X,12,2X,F4.1)
END IF

WRITE(LDEV2,22) CASTRS,CYY,CPHI,CDPHI,CSTRM,CCENT,CHK,CDMG

100 COBTINUE

| UPDATE AVERAGE STRESSES OF LAMIEATE 1

aacaaoaoa a o

IF (INCREM.GT.1) THEW
READ(LDEV1,11) CSTRS
ELSE
D0 200 K1=1,6
200 STRESS (K1)=0.D0
END IF

CALL CALSTRS(STRS,STRESS,DUMMY,DEP,DE)
WRITE(LDEV2,11) CSTRS
CALL CHKCRK(NP,NCRACK, ICRK)

Q o a o

IF (ICRK.EQ.’Y’) THER
WRITE(6,878) ELNUM,INTGPR
878 FORMAT(2X,’LAMINATE CRACK’,2X,15,2X,I2)

END IF
C
RETURKE
C
C ENTRY OCALSTF
C
ENTRY OCALSTF(ELNUM, INTGPN)
c

IF (INCREM.GT.1) THEE
IF (NIT.EQ.1) THEN
READ(LDEV1,11) CSTRE
ELSE
READ(LDEV2,11) CSTRN




aaa

aaaQ aaaqa

aaoaoaaaann

aaaa

END IF

END IF

--~ GET THE MATERIAL PARAMETERS

CMO=MATL (1)
CFO=MATL(2)
EM=NATL(3)
EF=MATL(4)
UM=MATL (5)
UF=MATL(6)
GM=EM/ (2.DO*(1.DO+UN))
GF=EF/(2.D0*(1.DO+UF))

—-=- GET THE YIELD PARAMETERS

B=90.D0

-== COMPUTE ELASTIC CONSTANTS

CALL ADMAT(ESMB,EM,UM,GM)
CALL ADMAT(ESFB,EF,UF,GF)

TYPE OF
NTP=1
§TP=2
ETP=3

DO 300

LAMINATE

; SINGLE LAMIBAE

; EVEN NUMBER OF LAMINAE
; ODD BUMBER OF LAMIBAE

LP=1,NP

IF (INCREM.GT.1) THEN
IF (NIT.EQ.1) THEN

READ(LDEV1,22) CASTRS,CYY,CPHI,CDPHI ,CSTRM,CCENT,CHK,CDMG

ELSE

READ(LDEV2,22) CASTRS,CYY,CPHI,CDPHI,CSTRM,CCENT,CHK,CDMG

EED IF
ELSE

CDMG=’
YY=0.DO

EED IF

--- GET THE FIBER DIRECTION OF PLY AND THICKNESS

THETA=DEGRE (LP)
THKK=PLYTHK (LP)

CALL AECOB(CMO,CFO,EM,GM,UM)

IF (CDMG.NE.’Y’) THEN

IF (YY.

CALL
CALL
CALL
CALL
CALL
CALL
ELSE
CALL
CALL
CALL
CALL
END IF

GT.0.9) THEN
ELPLD(PSMB,ESMB,STRSM,CENT,B)

APCON (PSMB,CMO,CFO,EM ,EM,GM,GM ,UM)

PLYSTF(EPLY,PSMB,ESFB,CMO,CFO)
TRESTF (EPLY,THETA)
CONVER (GRS ,EPLY)

GRSSTF (DEP ,GRS ,NTP,LP NP ,THKK, THICK)

PLYSTF(EPLY,ESMB,ESFB,CMO,CFO)
TRESTF (EPLY, THETA)
CONVER (GRS ,EPLY)

GRSSTF (DEP,GRS,NTP ,LP ,NP,THKK , THICK)

CALL DMAGE1(DM,PHI)

IF (YY.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
ELSE
CALL

GT.0.9) THEN
ELPLD(PSMB,ESMB,STRSM,CENT,B)

APCOE (PSMB,CMO,CFO ,EM ,EM,GM,GM ,UM)

PLYSTF(EPLY ,ESMB ,ESFB,CM0,CFO)
ELDAMG (DEPLY ,DM,EPLY)

TRESTF (DEPLY ,THETA)

COBVER(GRS ,DEPLY)

GRSSTF(DEP,GRS,N¥TP,LP NP, THKK, THICK)

PLYSTF(EPLY,ESMB,ESFB,CMO,CFO0)
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CALL ELDAMG(DEPLY,DM,EPLY)

CALL TRESTF(DEPLY,THETA)

CALL CONVER(GRS,DEPLY)

CALL GRSSTF(DEP,GRS,NTP,LP,XP,THKK,THICK)
E¥D IF

CONTINUE

IF (INCREM.GT.1i) THER
IF (EIT.EQ.1) THER
READ(LDEVi,11) CSTRS
ELSE
READ(LDEV2,11) CSTRS
END IF
BACKSPACE (UNIT=LDEV)
BACKSPACE (UNIT=LDEV)
BACKSPACE (UNIT=LDEV)
BACKSPACE (UNIT=LDEV)
END IF

RETURE
FORMAT(A48)

FORMAT (A48,A8,4A48,A8,A1)
EED

SUBROUTINE LDCOM(ICODE,ELNUM,INTGPN,ICRK)
INTEGER ELNUM
CHARACTER#*1 ICRK

IF (ICODE.EQ.O) THEN

CALL LCALSTF(ELNUM,INTGPN)
ELSE

CALL LSTRDAM(ELNUM,INTGPYN,ICRK)
EED IF

RETURN
EED

LMEDAM

SUBROUTIKE LMEDAM

Pl bl b et b S

PROGRAMNM:

PROGRAM ’MEDAM’ IS THE CONTROL UNIT FOR CALCULATION OF THE
ELASTIC STRESS-STRAIN STIFFNESS MATRIX INCLUDING THE
EFFECT OF DAMAGE.

St bl bl bt b el

INPLICIT REAL*8 (A-H,0-2)

INTEGER ELEUM

CHARACTER#*288 CDM

CHARACTER#*48 CSTRN ,CSTRS,CAST,CSTM,CPM,CPF,CPB,CSTF ,CCENT
CHARACTER#*8 CHKM,CHKF,CHKB,CYY

CHARACTER*1 CDMG,ICRK

COMMOX/DEVICE/LDEV1 ,LDEV2,LDEV3,LDEV4,LDEV ,LDEVST
COMMON/LAYTP1/EP ,NTP

COMMON/ELSTR2/STRS(6)

COMMON/MATER1/DEP (6,6)

COMMON/IKPUT1/THICK ,NPLY

COMMON/IEPUT2/MATL(10) ,DMGPRM(27)
COMMON/INPUT3/DEGRE(10) ,PLYTHK(10)
COMMON/CONTR1/INCREM NIT

COMMON/MEDAM1/ESMB(6,6) ,ESFB(6,6)
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COMMON/MEDAM2/ECMB(6,6) ,ECFB(6,6)
COMMOB/AFECON1/AFE(6,6)
COMMON/AMECON1/AME(6,6)
COMMOX/BFECON1/BFE(6,6)
COMMON/BMECON1/BME(6,6)

DIMENSION ESM(6,6) ,ESF(6,6),PSHB(6,6)

DIMENSION EPLYB(6,6) ,EPLY(6,6) ,DEPLY(6,6) ,ECB(6,6),GRS(6,6)

DIMENSION STRAIN(6),DE(6),TDE(6),DDE(6),TDDE(6)

DIMEESIOR STRESS(6),TSTRS(6),DS(6),TDS(6),DDS(6),TDDS(6)

DIMENSION AVGSTR(6)
DINEESION DUMMY(6) ,DUMMY1(6) ,DUMMY2(6)

DIMENSION FS(6) ,CENT(6)

DIMENSION YM(6),YF(6),YB(6) ,HMI(6) ,HFI(6) ,HBI(6)

DIMENSION PHIM(6) ,PHIF(6) ,PHIB(6)
DIMENSION DM(6,6) ,DMM(6,6) ,DMF(6,6) ,DMB(6,6)
DIMENSION DMPM(6,6,6) ,DMPF(6,6,6) ,DMPB(6,6,6)

DIMENSION STRSM(6),STRSF(6),DSM(6),DSF(6) ,DDSM(6) ,DDSF(6)

DIMERSION DSTREM(6)
DIMENSIOE BSTRSM(6) ,BDSTREM(6)
DIMENSIOF TSTRSM(6) ,BTSTRSM(6)

DIMENSION NCRACK(5)

EQUIVALENCE (CSTRE,STRAIN), (CAST,AVGSTR),(CSTM,
$(CSTF,STRSF) , (CPM,PHIM) , (CPF ,PHIF) , (CPB,PHIB) ,
$ (CHKM ,HKM) , (CHKF ,HKF) , (CHKB,HKB) , (CYY,YY), (CDM,
$(CSTRS,STRESS)

10

ENTRY LSTRDAM

STRSM) ,

DM),

ENTRY LSTRDAM(ELKUM, INTGPN,ICRK)

IF (IBCREM.GT.1) THER
READ(LDEV1,11) CSTRE

ELSE
DO 10 I=1,6
STRAIN(I)=0.DO

EED IF

CALCULATION OF THE STRAIN INCREMENT FOR LAMINATE

CALL CALSTRN(DE,STRAIE)
WRITE(LDEV2,11) CSTRE
GET THE MATERIAL PARAMETERS

CMO=MATL (1)
CFO=MATL(2)
EM=MATL(3)
EF=MATL(4)
UM=MATL(5)
UF=MATL(6)
GM=EM/(2.DO*(1.DO+UM))
GF=EF/(2.DO* (1 .DO+UF))

GET THE YIELD PARAMETERS

SY=MATL(7)
B=MATL(8)

GET THE DAMAGE PARAMETERS

RM1=DMGPRM(1)
RM2=DMGPRM(2)
RM3=DMGPRN(3)
QM1=DMGPRM(4)
QM2=DMGPRM(5)
QM3=DMGPRM(6)
VM1=DMGPRM(7)
VM2=DMGPRM(8)
VM3=DMGPRM(9)
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RF1=DMGPRM(10)
RF2=DMGPRM(11)
RF3=DMGPRM(12)
QF1=DMGPRM(13)
QF2=DMGPRM(14)
QF3=DMGPRM(15)
VF1=DMGPRM(16)
VF2=DMGPRM(17)
VF3=DMGPRM(18)

RB1=DMGPRM(19)
RB2=DMGPRM(20)
RB3=DMGPRM(21)
QB1=DMGPRM(22)
QB2=DMGPRM(23)
QB3=DMGPRM(24)
VB1=DMGPRM(25)
VB2=DMGPRM(26)
VB3=DMGPRM(27)

| CALCULATION OF THE STRESS INCREMENT & TOTAL STRESS ON EACH PLY

TYPE OF LAMINATE
NTP=1 ; SINGLE LAMINAE
NTP=2 ; EVEN NUMBER OF LAMINAE
ETP=3 ; ODD NUMBER OF LAMIBAE

aaaoaaaaoaan

DO 100 KP=1,HP

Q

IF (INCREM.GT.1) THENW
READ(LDEV1,22) CAST,CYY,CPM,CPF,CPB,CSTM,CSTF,CCENT,CHKM, CHKF
$ ,CHKB,CDMG,CDM
ELSE
DO 110 I=1,6
AVGSTR(I)=0.DO
PHIM(I)=0.DO
PHIF(I)=0.D0
PHIB(I)=0.DO
STRSM(I1)=0.D0
STRSF(I)=0.DO
110 CEBT(I)=0.D0
HKM=0.DO
HKF=0.DO
HKB=0.DO
YY=0.DO
CDMG=> 7
DO 115 I=1,6
DO 115 J=1,6
IF (I.EQ.J) THER
DM(I,J)=1.DO0
ELSE
DM(1,J)=0.D0
END IF
115 COBTINUE
END IF

DO 120 I=1,6
120 TSTRSM(I)=STRSM(I)

C --- GET THE FIBER DIRECTION OF PLY AND THICKNESS

THETA=DEGRE (KP)
THRK=PLYTHK (KP)
SCALE=10.D0

C --- COMPUTE ELASTIC COESTANTS

CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
CALL ADMAT(ESMB,EM,UM,GM)

CALL ADMAT(ESFB,EF,UF,GF)

CALL ASMAT(ECMB,EM,UM)

CALL ASMAT(ECFB,EF,UF)

IF (CDMG.NE.’Y’) THEN

CALL AECON(CMO,CFO,EM,GM,UM)

CALL BECON (CMO,CFO)

CALL PLYSTF(EPLYB,ESMB,ESFB,CMO,CFO)
ELSE

CALL AECON(CM,CF,EM,GM,UM)
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CALL BECON(CM,CF)

CALL PLYSTF(EPLYB,ESMB,ESFB,CN,CF)
END IF

CALL COMPLI(ECB,EPLYB)

COMPUTATION A TRIAL ELASTIC STRESS OF MATRIX

IF (CDMG.NE.’ ’) THEN
CALL DMAGE1 (DMM ,PHIM)
CALL DMAGE1(DMF ,PHIF)
CALL DMAGE1(DMB,PHIB)
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CF0)
CALL AECON (CM,CF,EM,GM,UM)
CALL BECON(CM,CF)
CALL ADCON (DM ,DMM,DNF)
CALL BDCON (DM ,DMM, DNF)
CALL ELDAMG(ESM,DMM,ESMB)
CALL ELDAMG(ESF ,DMF,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CMO,CFO)
CALL ELDAMG(DEPLY ,DMB,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL COEVER(GRS,DEPLY)
ELSE
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECOHN(CMO,CFO)
CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO0)
CALL TRESTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
EED IF
CALL CALSTRS(DUMMY1,DUMMY2,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
CALL LOSTRS(DSM,BME,TDS)
CALL TRESTN(TDE,DE,THETA)
CALL LOSTRS(DSTREM,AME,TDE)

CALL UPDATE(TSTRSM,DSM)

IF (CDMG.EQ.’ ’) THEN

IF (YY.GT.0.9) THEN
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECON{(CMO,CFO)
CALL PLYSTF(EPLYB,ESMB,ESFB,CMO,CFO)
CALL COMPLI(ECB,EPLYB)
CALL ELPLD(PSMB,ESMB,STRSM,CENT,B)
CALL APCON(PSMB,CMO,CFO,EM,EM,GM,GM,UM)
CALL BPCORN (PSMB,CMO,CFO0)
CALL PLYSTF(EPLY,PSMB,ESFB,CHO,CFO0)
CALL TRNSTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRNSTR(TDS,DS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DSM,BME,TDS)
CALL LOSTRS(DSF,BFE,TDS)
CALL UPDATE(STRSM,DSM)
CALL UPDATE(STRSF,DSF)
CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK,THICK)
ELSE
CALL YIELD(FY,TSTRSM,CENT,SY)
IF (FY.LT.0.0) THEN
CALL AECOX(CMO,CFO,EM,GM,UM)
CALL BECOE(CMO,CF0)
CALL PLYSTF(EPLYB,ESMB,ESFB,CMO,CF0)
CALL COMPLI{(ECB,EPLYB)
CALL PLYSTF(EPLY,ESMB,ESFB,CHO,CF0)
CALL TRNSTF(EPLY,THETA)
CALL CONVER(GRS,EPLY)
CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRNSTR(TDS,DS,THETA)
CALL TRNSTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DSM,BME,TDS)
CALL LOSTRS(DSF,BFE,TDS)
CALL UPDATE(STRSM,DSM)
CALL UPDATE(STRSF,DSF)
CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK, THICK)
ELSE
YY=1.DO
NSBI=INT(SCALE+0.1)
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125

130

D0 125 L=1,6
DDE(L)=DE(L) /SCALE

CALL AECON (CMO,CFO,EM,GM,UN)

CALL BECON(CMO,CFO)

CALL PLYSTF(EPLYB,ESMB,ESFB,CMO,CFO)
CALL COMPLI(ECB,EPLYB)

CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO)
CALL TRNSTF(EPLY,THETA)

CALL CONVER(GRS,EPLY)

CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)

CALL TRNSTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)
CALL LOSTRS (DDSF,BFE,TDDS)
CALL UPDATE(STRSN,DDSM)
CALL UPDATE(STRSF,DDSF)
DO 130 I=1,NSBI-1
IF (IYY.EQ.10) THEN

FY=1.0
ELSE

CALL YIELD(FY,STRSM,CENT,SY)
END IF
IF (FY.LT.0.0) THEN
CALL AECON(CMO,CFO,EM,GM,UM)
CALL BECON(CMO,CFO0)
CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CF0)
CALL TRESTF(EPLY,THETA)
CALL COEVER(GRS,EPLY)

CALL CALSTRS(DUMMY,AVGSTR,DDS,GRS,DDE)

CALL TRESTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)

CALL LOSTRS (DDSF,BFE,TDDS)

CALL UPDATE(STRSM,DDSH)

CALL UPDATE(STRSF,DDSF)

ELSE

1YY=10

CALL AECOE(CMO,CFO,EM,GM,UM)
CALL BECON (CMO,CFO)

CALL ELPLD(PSMB,ESMB,STRSM,CERT,B)

CALL APCON (PSMB,CMO,CFO,EM,EM,GM,GM,UM)

CALL BPCON(PSMB,CMO,CFO0)

CALL PLYSTF(EPLY,PSMB,ESFB,CMO,CFO)
CALL TRNSTF(EPLY,THETA)

CALL CONVER(GRS,EPLY)

CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)

CALL TRNSTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)

CALL LOSTRS(DDSF,BFE,TDDS)

CALL UPDATE(STRSM,DDSM)

CALL UPDATE(STRSF,DDSF)

END IF

COBTIEBUE

CALL GRSSTF(DEP,GRS ,NTP,KP,BP,THKK,THICK)

END IF

CALL DMAGE1(DMM,PHIM)

CALL DMAGE1(DMF,PHIF)

CALL DMAGE1(DMB,PHIB)

CALL EFECT1(BSTRSM,DMM,STRSM)

CALL EFECT1(BTSTRSM,DMM,TSTRSM)

IF (YY.GT.0.9) THEN
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
CALL AECON(CM,CF,EM,GM,UN)
CALL BECON(CM,CF)
CALL PLYSTF(EPLYB,ESMB,ESFB,CM,CF)
CALL COMPLI(ECB,EPLYB)
CALL ELPLD(PSMB,ESMB,BSTRSM,CEBT,B)
CALL APCON (PSMB,CM,CF,EM,EM,GM,GN,UM)
CALL BPCDE(PSMB,CM,CF)
CALL ADCON(DM,DMM,DNF)
CALL BDCON (DM ,DMM,DNF)
CALL ELDAMG (ESM,DMM,PSMB)
CALL ELDAMG(ESF,DMF,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CNMO,CFO)
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CALL ELDAMG(DEPLY,DMB,EPLY)

CALL TRNSTF(DEPLY,THETA)

CALL CONVER(GRS,DEPLY)

CALL CALSTRS(DUMMY,AVGSTR,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)

CALL TRESTR(TSTRS,AVGSTR,THETA)

CALL LOSTRS(DSM,BME,TDS)

CALL LOSTRS(DSF,BFE,TDS)

CALL UPDATE(STRSM,DSM)

CALL UPDATE(STRSF,DSF)

CALL GRSSTF(DEP,GRS,NTP,KP ,NP,THKK,THICK)

ELSE

CALL YIELD(FY,BTSTRSM,CENT,SY)
IF (FY.LT.0.0) THEE
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
CALL AECON(CM,CF,EM,GN,UM)
CALL BECOE (CN,CF)
CALL PLYSTF(EPLYB,ESMB,ESFB,CM,CF)
CALL COMPLI (ECB,EPLYB)
CALL ADCON (DM ,DMM,DMF)
CALL BDCOE(DM,DMM,DMF)
CALL ELDAMG(ESM,DMM ,ESMB)
CALL ELDAMG (ESF,DNF ,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CMO,CF0)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL COBVER(GRS,DEPLY)
CALL CALSTRS (DUMMY,AVGSTR,DS,GRS,DE)
CALL TRESTR(TDS,DS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS (DSM,BME,TDS)
CALL LOSTRS(DSF,BFE,TDS)
CALL UPDATE(STRSM,DSM)
CALL UPDATE(STRSF,DSF)
CALL GRSSTF(DEP,GRS,NTP,KP NP, THKK,THICK)
ELSE
YY=1.D0
¥SBI=INT(SCALE+0.1)
DO 135 L=1,6
DDE(L)=DE(L) /SCALE
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
CALL AECOE (CM,CF,EM,GM,UM)
CALL BECDK (CM,CF)
CALL PLYSTF(EPLYB,ESMB,ESFB,CM,CF)
CALL COMPLI(ECB,EPLYB)
CALL ADCOE (DM ,DMM,DMF)
CALL BDCOE (DM,DMM,DMF)
CALL ELDAMG(ESM,DMM ,ESMB)
CALL ELDAMG (ESF,DMF ,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CMO,CFO)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL CONVER(GRS,DEPLY)
CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)
CALL TRESTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LDSTRS(DDSM,BME,TDDS)
CALL LOSTRS(DDSF,BFE,TDDS)
CALL UPDATE(STRSM,DDSM)
CALL UPDATE(STRSF,DDSF)
DO 140 I=1,NSBI-1
IF (IYY.EQ.10) THEN
FY=1.0
ELSE
CALL EFECT1(BSTRSM,DMM,STRSM)
CALL YIELD(FY,BSTRSM,CENT,SY)
EED IF
IF (FY.LT.0.0) THEN
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CF0)
CALL AECON(CM,CF,EM,GM,UM)
CALL BECON(CM,CF)
CALL ADCOE (DM ,DMM,DMF)
CALL BDCOK(DM,DMM,DNF)
CALL ELDAMG(ESM,DMM ,ESMB)
CALL ELDAMG (ESF,DMF ,ESFB)
CALL PLYSTF (EPLY,ESM,ESF,CMO,CFO0)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL COEVER(GRS,DEPLY)
CALL CALSTRS (DUMMY,AVGSTR,DDS GRS ,DDE)
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CALL TRNSTR(TDDS,DDS,THETA)
CALL TRESTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME,TDDS)
CALL LOSTRS (DDSF ,BFE,TDDS)
CALL UPDATE(STRSM,DDSK)
CALL UPDATE(STRSF,DDSF)
ELSE
1YY=10
CALL VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
CALL AECON(CM,CF,EM,GM,UM)
CALL BECON(CM,CF)
CALL ELPLD(PSMB,ESMB,BSTRSM,CENT,B)
CALL APCON(PSMB,CM,CF,EM,EM,GM,GN,UM)
CALL BPCON(PSMB,CM,CF)
CALL ADCON(DM,DMM,DMF)
CALL BDCON(DM,DMM,DMF)
CALL ELDAMG (ESM,DMM ,PSHB)
CALL ELDAMG (ESF,DMF ,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CNO,CFO)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRNSTF(DEPLY,THETA)
CALL CONVER(GRS,DEPLY)
CALL CALSTRS(DUMMY1,AVGSTR,DDS,GRS,DDE)
CALL TRESTR(TDDS,DDS,THETA)
CALL TRNSTR(TSTRS,AVGSTR,THETA)
CALL LOSTRS(DDSM,BME, TDDS)
CALL LOSTRS (DDSF,BFE,TDDS)
CALL UPDATE(STRSM,DDSM)
CALL UPDATE(STRSF,DDSF)
EED IF
140 CONTINUE
CALL GRSSTF(DEP,GRS,NTP,KP,NP,THKK, THICK)
END IF
END IF

END IF

| UPDATE BACK-STRESS

IF (YY.GT.0.9) THEN

IF (CDMG.NE.’Y’) THER
CALL FDER(FS,STRSM,CENT)
CALL QSCALAR(Q,ESMB,STRSM,CEET,B)
CALL LAMUDA(ALAM,ESMB,FS,DSTREM,Q)
CALL USCALAR(UT,STRSM,CENT ,ALAM,B)
CALL CENTER(CERT,STRSK,UT)

ELSE
CALL EFECT1(BSTRSM,DMM,STRSM)
CALL EFECT2(BDSTREM,DMM,DSTREM)
CALL FDER(FS,BSTRSM,CENT)
CALL QSCALAR(Q,ESMB,BSTRSM,CENT,B)
CALL LAMUDA(ALAM,ESMB,FS,BDSTREM,Q)
CALL USCALAR(UT ,BSTRSM,CENT,ALAM,B)
CALL CENTER(CENT,BSTRSM,UT)

END IF

END IF

| UPDATE DMAGE OF EACH PLY

aaoaaaa

CALL DMAGE2(DMM,DMPM,PHIN)
CALL DMAGE2 (DMF,DMPF ,PHIF)
CALL DMAGE2(DMB,DMPB,PHIB)

CALL DMGFRC(YM,DMM,DNPM,STRSM,ECMB)
CALL DMGFRC(YF,DMF,DMPF ,STRSF,ECFB)
CALL DMGFRC(YB,DMB,DMPB,TSTRS,ECB)
U1=ESMB(1,1)-2.DO*ESMB(4,4)
U2=ESMB(2,2) -2 .DO*ESMB(5,5)
U3=ESMB(3,3)-2.DO%ESMB(6,6)

CALL DMGHAR(HMI,AM1i,AM2,AM3,BM1,BM2,BM3,PHIM ,HKM,RM1,RM2,RM3
$,QM1,QM2,QM3,U1,U2,U3, VM1 ,VM2,VM3)

U1=ESFB(1,1)-2.DOXESFB(4,4)
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U2=ESFB(2,2)-2.DO*ESFB(5,5)
U3=ESFB(3,3)~2.DO*ESFB(6,6)

CALL DMGHAR(HFI,AF1,AF2,AF3,BF1,BF2,BF3,PHIF,HKF,RF1,RF2,RF3
$,QF1,QF2,QF3,U1,U2,U3,VF1,VF2,VF3)

U1=EPLYB(1,1)-2.DO+EPLYB(4,4)
U2=EPLYB(2,2)-2.DO*EPLYB(5,5)
U3=EPLYB(3,3)-2.DO*EPLYB(6,6)

CALL DMGHAR(HBI,AB1,AB2,AB3,BB1,BB2,BB3,PHIB,HKB,RB1,RB2,RB3
$,QB1,0QB2,QB3,U1,U2,U3,VB1,VB2,VB3)

CALL DMGCRT(GCRTM,YM,HMI)
CALL DMGCRT(GCRTF,YF,HFI)
CALL DMGCRT(GCRTB,YB,HBI)

IF (GCRTM.GE.1.0) THEN
CALL CALDMG(PHIM,DMM,DMPM,STRSM,DSM,ECMB,HKM,YM, HMI
$ ,AM1,AM2,AM3,BM1,BM2,BM3,CDMG,1)
CDMG="Y’
END IF

IF (GCRTF.GE.1.0) THEN
CALL CALDMG(PHIF,DMF,DMPF,STRSF,DSF,ECFB,HKF,YF,HFI
$ ,AF1,AF2,AF3,BF1,BF2,BF3,CDMG,2)
CDHMG=Y"’
END IF

IF (GCRTB.GE.1.0) THEN
CALL CALDMG(PHIB,DMB,DMPB,TSTRS,TDS,ECB,HKB,YB,HBI
$ ,AB1,AB2,AB3,BB1,BB2,BB3,CDMG,3)
CDMG=’Y">
END IF

IF (CDMG.HE.’ ’) THEE
CALL DMAGE1(DMM,PHIM)
CALL DMAGE1 (DMF ,PHIF)
CALL VOLFRC(CM,CF,PHIM, PHIF,CMO,CFO)
CALL OVDMG(DM,DMM,DMF ,BME ,BFE,CH,CF)
CALL AECON(CM,CF,EM,GM,UM)
CALL BECON(CM,CF)
CALL BDCON(DM,DMM,DMF)
CALL OVDMG(DM,DMM,DMF,BME,BFE,CM,CF)
END IF

WRITE(LDEV2,22) CAST,CYY,CPM,CPF,CPB,CSTM,CSTF,CCENT,CHKM, CHKF
$,CHKB ,CDMG, CDM

100 CONTINUE

| UPDATE AVERAGE STRESSES OF LAMINATE

QaoaoaaQ Q

IF (INCREM.GT.1) THEN
READ(LDEV1,11) CSTRS
ELSE
DO 200 Ki=1,6
200 STRESS(K1)=0.DO

E¥D IF
¢ CALL CALSTRS(STRS,STRESS,DUMMY,DEP,DE)
¢ WRITE(LDEV2,11) CSTRS
z CALL CHECRK(NP,NCRACK,ICRK)

IF (ICRK.EQ.’Y’) THEN
WRITE(6,878) ELNUM,INTGPE
878 FORMAT (2X, ’LAMINATE CRACK’,2X,15,2X,I2)
END IF

Q

RETURE

ENTRY LCALSTF

aocaoaa

ENTRY LCALSTF(ELNUM,INTGPN)
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IF (INCREM.GT.1) THEE
IF (NIT.EQ.1) THEN
READ(LDEV1,11) CSTRN
ELSE
READ(LDEV2,11) CSTRE
END IF
END IF

GET THE MATERIAL PARAMETERS

Qa0
1
]
'

CM0=0.65D0

CF0=0.35D0
EM=80000.D0
EF=410000.D0

UM=0.3D0

UF=0.22D0
GM=EM/ (2.DO* (1 .DO+UM))
GF=EF/(2.D0*(1.DO+UF))

--- GET THE YIELD PARAMETERS
B=90.D0O

--- COMPUTE ELASTIC COESTANTS

aaan aaa

CALL ADMAT(ESMB,EM,UM,GM)
CALL ADMAT(ESFB,EF,UF,GF)

TYPE OF LAMINATE
ETP=1 ; SINGLE LAMINAE
NTP=2 ; EVEN NUMBER OF LAMINAE
BTP=3 ; ODD NUMBER OF LAMIBAE

aaoaoaoaoaaa

DD 300 LP=1,NP

Q

IF (INCREM.GT.1) THEN

IF (BIT.EQ.1) THEN

READ(LDEV1,22) CAST,CYY,CPM,CPF,CPB,CSTM,CSTF,CCERT,CHKM, CHKF
$,CHKB,CDMG, CDM

ELSE

READ(LDEV2,22) CAST,CYY,CPM,CPF,CPB,CSTM,CSTF,CCEBT,CHKM, CHKF
$ ,CHKB,CDMG,CDM

ERED IF

ELSE

CDMG=>

YY=0.DO

EED IF

--- GET THE FIBER DIRECTION OF PLY AED THICKNESS

aQaaa

THETA=DEGRE(LP)
THKK=PLYTHK (LP)

IF (CDMG.NE.’Y’) THEE

IF (YY.GT.0.9) THEN

CALL AECON(CMO,CFO,EM,GM,UM)

CALL ELPLD(PSMB,ESMB,STRSM,CEET,B)

CALL APCON(PSMB,CMO,CFO,EM,EM,GM,GM,UM)

CALL PLYSTF(EPLY,PSMB,ESFB,CMO,CFO)

CALL TRESTF(EPLY,THETA)

CALL CONVER(GRS,EPLY)

CALL GRSSTF(DEP,GRS,ETP,LP,NP,THKK,THICK)
ELSE

CALL AECOE(CMO,CFO,EN,GM,UM)

CALL PLYSTF(EPLY,ESMB,ESFB,CMO,CFO)

CALL TRNSTF(EPLY,THETA)

CALL CONVER(GRS,EPLY)

CALL GRSSTF(DEP,GRS,NTP,LP,¥P,THKK,THICK)

END IF

ELSE

CALL DMAGE1(DMM,PHIM)
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CALL DMAGE1(DMF,PHIF)
CALL DMAGE1(DMB,PHIB)
CALL EFECT1(BSTRSM,DMM,STRSM)
IF (YY.GT.0.9) THEW
CALL VOLFRC(CM,CF,PHIM, PHIF,CMO,CFO)
CALL AECOE(CM,CF,EM,GM,UM)
CALL ELPLD(PSMB,ESMB,BSTRSM,CENT,B)
CALL APCON(PSMB,CM,CF,EM,EM,GM,GM,UM)
CALL ADCON(DM,DMM,DMF)
CALL ELDAMG(ESM,DMM,PSMB)
CALL ELDAMG(ESF ,DMF,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CMO,CFO0)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRNSTF(DEPLY,THETA)
CALL CONVER(GRS,DEPLY)
CALL GRSSTF(DEP,GRS,NTP,LP ,NP,THKK,THICK)
ELSE
CALL VOLFRC(CM,CF,PHIM,PHIF,CMC,CFO)
CALL AECON(CM,CF,EM,GM,UM)
CALL ADCON (DM ,DMM,DNF)
CALL ELDAMG(ESM,DMM,ESMB)
CALL ELDAMG(ESF ,DNF,ESFB)
CALL PLYSTF(EPLY,ESM,ESF,CMO,CFO0)
CALL ELDAMG(DEPLY,DMB,EPLY)
CALL TRESTF(DEPLY,THETA)
CALL COEVER(GRS,DEPLY)
CALL GRSSTF(DEP,GRS,NTP,LP,EP,THKK, THICK)
EED IF

CONTINUE

IF (IECREM.GT.1) THEEN
IF (NIT.EQ.1) THEE
READ(LDEV1,11) CSTRS
ELSE
READ(LDEV2,11) CSTRS
END IF
BACKSPACE (UFIT=LDEV)
BACKSPACE (UBIT=LDEV)
BACKSPACE (URIT=LDEV)
BACKSPACE (URIT=LDEV)
END IF

RETURK
FORMAT (A48)

FORMAT (A48,A8,6A48,3A8,A1,A288)
EED

CALSTREYE

10

SUBROUTINE CALSTRE(DE,STRAIN)
CALCULATION OF THE STRAIN INCREMENT

INPLICIT REAL*8 (A-H,0-Z)
COMMON/ELSTR1/STRE(6)
DIMEESIOE DE(6) ,STRAIE(6)
DO 10 K1=1,3
DE(K1)=STRN(K1)-STRAIN (K1)
STRAIN(K1)=STRE(K1)

RETURN

EED

CALSTRS

THIS SUBPROGRAM CALCULATES THE STRESS INCREMENT AND

SUBROUTINE CALSTRS(STRS,STRESS,DS,DEP,DE)

THE TOTAL STRESS

15
10

INPLICIT REAL*8 (A-H,0-Z)

DIMEESION STRS(6),STRESS(6),DS(6) ,DEP(6,6),DE(6)

DO 10 Ki1=1,3

€ST=0.D0

D0 15 K2=1,3
CST=CST+DEP (K1 ,K2)*DE(K2)
DS(K1)=CST
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20

DO 20 K1=1,3
STRESS (K1)=STRESS (K1)+DS(K1)
STRS(K1)=STRESS (K1)

RETURK
END

SUBROUTINE UPDATE

10

SUBROUTINE UPDATE(A,B)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(6),B(6)

DO 10 I=1,6
A(D)=A(D)+B(I)

RETURN

END

SUBROUTIRE CHKCRK

SUBROUTINE CHKCRK (NP ,NCRACK,ICRK)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION NCRACK(S)
CHARACTER*1 ICRK
IF((HCRACK(1) .EQ.1) .AND.(NCRACK(2) .EQ.1)) THER
ICRK="Y?
ELSE
ICRK=’ ?
END IF
RETURE
EED

ADMAT

SUBROUTINE ADMAT(AD,YOUNG,POISS,AMUE)

T b b e

PROGRAM:

YADMAT’ CALCULATES THE ELASTIC STIFFNESS MATRIX.
ARGUMEYNT LIST:

YOUEG = YOUGS MODULUS

PDISS = POISSONS RATIO

=t b b

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION AD(6,6)

ALAM = THE LAMDA LAME COBSTABT
AMUE = THE MU LAME CONSTANT (THE SHEAR MODULUS G)

ALAM=POISS*YOUNG/ (1.DO+POISS)/(1.D0-2.DO*POISS)

AD(1,1)=ALAM+2.DO*AMUE
AD(1,2)=ALAM
AD(1,3)=ALAM
AD(2,1)=ALANM
AD(2,2)=ALAM+2 . DO*AMUE
AD(2,3)=ALANM
AD(3,1)=ALAM
AD(3,2)=ALANM
AD(3,3)=ALAM+2 .DO*AMUE
AD(4,4)=AMUE
AD(5,5)=AMUE
AD(6,6)=ANUE

RETURE
EXD

ASHMAT

SUBROUTIEE ASMAT(AS,YOUEG,POISS)

Pt b b

PROGRAM:

YADMAT’ CALCULATES THE ELASTIC COMPLIANCE MATRIX.
ARGUMNENT LIST:

YOUEG = YOUGS MODULUS

POISS = POISSONS RATID

Lo BN N

IMPLICIT REAL*8 (A-H,0-Z)
DIMERSION AS(6,6)
AS(1,1)=1.D0/YOUNG
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AS(1,2)=-P0ISS/YOUNG
AS(1,3)=45(1,2)
45(2,1)=28(1,2)
A5(2,2)=A5(1,1)
A5(2,3)=A5(1,2)
AS(3,1)=45(1,2)
45(3,2)=45(1,2)
AS(3,3)=A5(1,1)
AS(4,4)=(2.D0*(1.DO+P0ISS))/YOUNG
AS(5,5)=A5(4,4)
AS(6,6)=A5(4,4)
RETURE

END

COMPLI

SUBROUTINE COMPLI(ECB,EPLY)

- -

PROGRAMN:

*COMPLI CALCULATES THE ELASTIC COMPLIANCE MATRIX OF COMPOSITE I

aaoaaq aaoa

10

IMPLICIT REAL*8 (A-H,0-2)
DIMENSIONK ECB(6,6) ,EPLY(6,6)
DO 10 I=1,6

DO 10 J=1,6
ECB(I,J)=EPLY(I,J)

CALL AIINV(ECB)

RETURN

END

LOSTRE

aaaq

SUBROUTINE LOSTRN(TLE,AE,TDE)
IMNPLICIT REAL#8 (A-H,0-2)
DIMENSION TLE(6),AE(6,6),TDE(6)
CALL MULV1(TLE,AE,TDE)

RETURE

EED

aaa

LOSTRS

SUBROUTINE LOSTRS(S,BE,STRESS)
IMPLICIT REAL*8 (A-H,D-2)
DIMEKSIOF S(6) ,BE(6,6) ,STRESS(6)
CALL MULV1(S,BE,STRESS)

RETURN

END

ELDAMG

aQa

aaao

SUBROUTINE ELDAMG(ED,DM,E)

THIS SUBPROGRAM CALCULATES THE DAMAGED ELASTIC STIFFEESS FOR
MATRIX OR FIBERS

IMNPLICIT REAL*8 (A-H,0-Z)
DIMENSION ED(6,6) ,DM(6,6) ,E(6,6)
DIMENSION DMI(6,6) ,DMIT(6,6) ,DMIE(6,6)

CALL DMINV(DMI,DM)

CALL TRANR(DMIT,DMI)
CALL ATIMB(DMIE,DMI,E)
CALL ATIMB(ED,DMIE,DMIT)

RETURE
EED

PLYSTF

aaaa aaaqQ

SUBROUTINE PLYSTF(EPLY,ESM,ESF,CM,CF)

THIS SUBPROGRAM CALCULATES THE LAMINAE ELASTIC STIFFNESS
MATRIX IN THE MATERIAL DIRECTION

IMPLICIT REAL*8 (A-H,0-Z)

COMMOE/AMECON1/AME(6 ,6)

COMMOR/AFECOE1/AFE(6,6)

DIMENSION ADEM(6,6),ADEF(6,6) ,EPLY(6,6) ,ESM(6,6) ,ESF(6,6)

CALL ATIMB(ADEM,ESM,AME)



aaaaa a

aoaa

10 EPLY(I,J)=CM#ADEM(I,J)+CF*ADEF(I,J)

CALL ATIMB(ADEF,ESF,AFE)
Do 10 I=1,6
DO 10 J=1,6

RETURN
END

GRSSTF

SUBROUTINE GRSSTF(GRS,q,NTP KP NP, THKK, THICK)

THIS SUBPROGRAM CALCULATES THE GROSS ELASTIC STIFFEESS

MATRIX INCLUDIEG THE EFFECT OF DAMAGE FOR LAMINATE

10

20

[eReNe]

aaa

30

40

100

IMPLICIT REAL#*8 (A-K,0-Z)

DIMEESION GRS(6,6),Q(6,6),A(6,6)

IF (NTP.EQ.1) THEN
DD 10 I=1,3
DO 10 J=1,3
GRS(I,))=Q(I,J)
CONTIBUE
GO TO 100

END IF

IF (KP.EQ.1) THEN
D0 20 I=1,3
DO 20 J=1,3
A(1,J)=0.DO
CONTINUE

END IF

DO 30 I=1,3
DO 30 J=1,3

IF ((KP.EQ.NP) .AND.(NTP.EQ.3)) THEN
A(I,0)=A(1,3)+Q(I,J)*THKK/2.DO

ELSE

A(T,J)=A(1,0)+Q(I,J)*THKK

END IF
CONTIRUE

IF (KP.EQ.NP) THEN
DO 40 I=1,3
D0 40 J=1,3

GRS(I,J)=2.DO*A(I,J)/THICK

COBTINUE
END IF

RETURNE
EED

TRESTR

SUBROUTINE TRNSTR(TE,E,THETA)

IMPLICIT REAL#*8 (A-H,0-2)
DIMEESICH TE(6),E(6)

P1=4.0DO*DATAN(1.0D0)
RADIAN=THETA*PI/180.0D0
C=DCOS(2.DO*RADIAK)
S=DSIE(2.DO*RADIAK)

EADD=0.5D0*(E(1)+E(2))
ESUB=0.5D0*(E(1)-E(2))

TE(1)=EADD+ESUB*C+E(3) *S
TE(2)=EADD-ESUB#C-E(3)*S
TE(4)=-ESUB#S+E(3)*C
TE(3)=0.D0

TE(5)=0.D0

TE(6)=0.D0

RETURE
END

TRESTE
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SUBROUTINE TRESTE(TE,E,THETA)
IMPLICIT REAL*8 (A-H,0-2)
DIMEESION TE(6) ,E(6)

PI=4.0DO*DATAN (1.0D0)
RADIAR=THETA#*PI/180.0D0
C=DC0S(2.DO*RADIAN)
S=DSIN{(2.DO*RADIAN)

T=0.5DO*E(3)

EADD=0.5D0*(E(1)+E(2))
ESUB=0.5D0*(E(1)-E(2))

TE(1)=EADD+ESUB#C+T*S
TE(2)=EADD-ESUB*C-T*S
TE(4)=-ESUB*S+T*C
TE(4)=TE(4)*2.D0
TE(3)=0.D0
TE(5)=0.D0

TE(6)=0.D0

RETURN

EXD

aaQaQ

YIELD

SUBROUTIKE YIELD(FY,S,ALPHA,SY)

aacaaoaaaaaoaaoaaoaaaaan
R R R R R R N ]

THIS SUBPROGRAM CALCULATES THE VALUE OF THE YIELD FUNCTION.

THE PROGRAMED YIED FUNCTION IS AN EXTENDE FORM OF THE
VOE MISES YIELD CRITERIOE. THIS YIELD FUNCTION IS THE

EQUIVALANT LAGRANGIAN FORMULATIOE OF THE EULERIAN VON MISES

TYPE YIELD CRITERIA.
THE YIELD FUBCTION HAS THE FOLLOWIEG FORM.
SY IS THE YIELD STRESS IN SIMPLE TENSION TEST

Pl bt b=t e R b R

10

IMPLICIT REAL*8 (A-H,0-Z)
DIMEESION S(6),ALPHA(6) ,TAU(6)
D0 10 I=1,6
TAU(I)=S(I)-ALPHA(I)

CALL SCLVV(FY,TAU,TAU)
FY=3.DO*FY/2.DO-SY*SY

RETURN

END

e ReNe]

FDER

SUBROUTINE FDER(FS,S,ALPHA)

aocaao
=

THIS PROGRAM CALCULATES THE DERIVATIVE OF "F'" WRT
<STRESS>
FS = DERIVATIVE OF F WRT <STRESS>

10

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION FS(6),5(6) ,ALPHA(6)
D0 10 I=1,6
FS(I1)=3.D0*(S(I)-ALPHA(I))
RETURE

END

aaaoa

ELPLD

SUBROUTINE ELPLD(EP,E,S,ALPHA,B)

aacaoaaa
bt b

THIS PROGRAM CALCULATES THE ELASTOPLASTIC MATRIX
THAT CORRESPOEDS TO THE YIELD FUNCTION F

=t e bl bt

10

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSIOF EP(6,6) ,E(6,6),FS(6),5(6),ALPHA(6)
DIMENSION TEMP1(6) ,TEMP2(6),P(6,6)

DO 10 I=1,6
FS(I)=3.D0*(S(I)-ALPHA(I))
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CALL QSCALAR(Q,E,S,ALPHA,B)
CALL MULV1(TEMP1,E,FS)
CALL MULVV(P,TEMP1,TEMP1)

c
DO 20 I=1,6
DD 20 J=1,6
20 P(I,)=P(1,3)/Q
c
CALL SUBMT(EP,E,P)
c
RETURN
END
c
c
c QSCALAR
c

SUBROUTINE QSCALAR(Q,E,S,ALPHA,B)
IMPLICIT REAL#8 (A-H,0-Z)
DIMENSION FS(6) ,FA(6),E(6,6),5(6),ALPHA(6) ,TAU(6) ,TEMP(6)
DO 10 I=1,6
FS(I)=3.DO0*(S(I)-ALPHA(I))
FA(I)=-FS(I)

10 TAU(I)=8(I)-ALPHA(I)
CALL MULV2(TEMP,FS,E)
CALL SCLVV(Q1,TEMP,FS)
CALL SCLVV(Q2,FA,TAU)
CALL SCLVV(Q3,FS,FS)
CALL SCLVV(Q4,TAU,FS)

C
Q=Q1~Q2*B*Q3/Q4
C
RETURK
END
c
c USCALAR
C

SUBROUTINE USCALAR(UT,S,ALPHA,ALAM,B)
IMPLICIT REAL*8 (A-H,D-Z)
DIMENSION FS(6),S(6) ,ALPHA(6) ,TAU(6)
D0 10 I=1,6
FS(1)=3.D0*(S(I)~ALPHA(I))

10  TAU(I)=S(I)-ALPHA(I)
CALL SCLVV(UT1,FS,FS)
CALL SCLVV(UT2,TAU,FS)
UT=ALAM*B*UT1/UT2
RETURK
EED

LAMUDA

aao

SUBROUTINE LAMUDA(ALAM,E,FS,DE,Q)
IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION E(6,6),FS(6) ,DE(6) ,TEMP(6)
CALL MULV2(TEMP,FS,E)

CALL SCLVV(ALAM,TEMP,DE)

ALAM=ALAM/Q

RETURN

END

CERTER

aaon

SUBROUTINE CENTER(ALPHA,S,UT)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION ALPHA(6),DALPHA(6),S(6),TEMP(6)
D0 10 1=1,6

10  TEMP(I)=S(I)-ALPHA(I)
DO 20 1=1,6

20  DALPHA(I)=TEMP(I)#UT
DO 30 I=1,6

30  ALPHA(I)=ALPHA(I)+DALPHA(I)
RETURN
END

ELDAMG

SUBROUTINE ELDAMG(ED,DM,E)

THIS SUBPROGRAM CALCULATES THE DAMAGED ELASTIC STIFFBESS FOR
MATRIX OR FIBERS

ana aQaaon
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IMPLICIT REAL#*8 (A-H,0-2)

DIMENSION ED(6,6) ,DM(6,6) ,E(6,6)
DIMENSION DMI(6,6),DMIT(6,6) ,DMIE(6,6)
CALL DMINV(DMI,DM)

CALL TRANR(DMIT,DMI)

CALL ATIMB(DMIE,DMI,E)

CALL ATINB(ED,DMIE,DMIT)

RETURN

END

EIDAMG

SUBROUTINE EIDAMG(EID,DM,EIB)
THIS SUBPROGRAM CALCULATES THE DAMAGED ELASTIC COMPLIANCE

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION EID(6,6),DM(6,6) ,EIB(6,6)
DIMENSIOE DMT(6,6) ,DMTE(6,6)

CALL TRANR(DMT,DM)

CALL ATIMB(DMTE,DMT,EIB)

CALL ATIMB(EID,DMTE,DM)

RETURE

END

AECOERE

SUBROUTINE AECON(CM,CF,EA,GA,UA)
IMPLICIT REAL*8 (A~-H,0-Z)

CALL CKLMP(EA,GA,UA,PK,PN,PP)
CALL PCONCEN(PK,PM,PP)

CALL TFCON

CALL AMECOE(CM,CF)

CALL AFECON

RETURN

END

CKLHMP

SUBROUTINE CKLMP(EA,GA,UA,XK,XM,XP)
IMPLICIT REAL*8 (A-H,0-Z)
XK=EA/(3.D0*(1.D0-2.D0*UA))+GA/3.DO
XM=EA/(2.D0*(1.DO+UA))

XP=XNM

RETURN

EED

PCOBCETFN

SUBROUTINE PCOBCEN(PK,PM,PP)

IMPLICIT REAL*8 (A-H,0-7)
COMMON/PCON1/P(6,6)
P(2,2)=(PK+4.DO*PM) / (8 . DO*PM*(PK+PM))
P(3,3)=P(2,2)

P(2,3)=-PK/(8.DO*PM* (PK+PM))
P(3,2)=P(2,3)
P(4,4)=(PK+2.DO%PM) / (2.DO*PM* (PK+PH))
P(5,5)=1.D0/(2.DO*PP)

P(6,6)=P(5,5)

RETURE

END

AFECODE

SUBROUTINE AFECON
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/AFECON1/AFE(6,6)
COMMON/AMECON1/AME(6,6)
COMMOK/TFCON1/TF(6,6)

CALL ATIMB(AFE,TF,AME)

RETURN
END

AMECOEKX

SUBROUTINE AMECON(CM,CF)
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IMPLICIT REAL*8 (A-H,0-Z)
COMMON/AMECON1/AME(6,6)

COMMOR/TFCON1/TF(6,6)

D0 10 I=1,6
D0 10 J=1,6
AME(X,J)=CF+TF(I,J)

AME(1,1)=CM+AME(1,1)
AME(2,2)=CN+AME(2,2)
AME(3,3)=CM+AME(3,3)
AME(4,4)=CM+AME(4,4)
AME(5,5)=CM+AME(5,5)
AME(6,6)=CH+AME(6,6)

CALL AIINV(AME)

RETURN
END

SUBROUTIRE TFCON

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/MEDAM1/ESMB(6,6) ,ESFB(6,6)

COMMOE/TFCON1/TF(6,6)
COMMOB/PCON1/P(6,6)
COMMOR/DFES1/DFES(6,6)
DIMEBSION DFES(6,6)

DFES(1,1)=ESFB(1,1)~ESMB(1,1)
DFES(1,2)=ESFB(1,2)-ESMB(1,2)
DFES (1,3)=ESFB(1,3)~-ESMB(1,3)

DFES(2,1)=DFES(1,2)
DFES(3,1)=DFES(1,3)

DFES(2,2)=ESFB(2,2)-ESMB(2,2)
DFES(2,3)=ESFB(2,3)-ESMB(2,3)

DFES(3,2)=DFES(2,3)

DFES(3,3)=ESFB(3,3)-ESMB(3,3)
DFES(4,4)=ESFB(4,4)-ESMB(4,4)
DFES(5,5)=ESFB(5,5)-ESMB(5,5)
DFES(6,6)=ESFB(6,6)~ESMB(6,6)

CALL ATIMB(TF,P,DFES)

TF(1,1)=1.DO+TF(1,1)
TF(2,2)=1.DO+TF(2,2)
TF(3,3)=1.DO+TF(3,3)
TF(4,4)=1.DO+TF(4,4)
TF(5,5)=1.DO+TF(5,5)
TF(6,6)=1.DO+TF(6,6)

CALL AIINV(TF)

RETURN
END

SUBROUTINE APCON(PSMB,CM,CF,EA,ET,GA,GT,UA)
IMPLICIT REAL#*8 (A-H,0-2)

DIMENSION PSMB(6,6)

CALL CKLMP(EA,ET,GA,GT,UA,PK,PL,PM,PP,PN)
CALL PCONCEN(PK,PM,PP,PE)

CALL PTFCON (PSMB)
CALL AMECOX (CM,CF)
CALL AFECOR

RETURN
EED

SUBROUTINE PTFCON(PSMB)
IMPLICIT REAL#*8 (A-H,0-2)
COMMON/MEDAM1/ESMB(6,6) ,ESFB(6,6)

COMMON/TFCON1/TF(6,6)
COMMON/PCON1/P(6,6)
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COMMON/DFES1/DFES (6,6)
DIMENSION PSMB(6,6) ,DFES(6,6)

D0 10 I=1,6
D0 10 J=1,6
DFES(I,J)=ESFB(I,J)-PSMB(I,J)

CALL ATIMB(TF,P,DFES)

TF(1,1)=1 .DO+TF(1,1)
TF(2,2)=1.D0+TF(2,2)
TF(3,3)=1.D0+TF(3,3)
TF(4,4)=1.DO+TF(4,4)
TF(5,5)=1.D0+TF(5,5)
TF(6,6)=1.D0+TF(6,6)

CALL AIINV(TF)

RETURN
END

QCOECERX

SUBROUTINE QCONCEN
IMPLICIT REAL#8 (A-H,0-Z)
COMMOE/QCON1/G(6,6)
COMMOB/PCOB1/P(6,6)

COMMOR /MEDAM1/ESMB(6,6) ,ESFB(6,6)
DIMESSION EP(6,6),Q1(6,6)

CALL ATIMB(EP,ESMB,P)
CALL ATIMB(Q1,EP,ESMB)
CALL SUBMT(Q,ESMB,Q1)

RETURKF
END

WFCOB

SUBROUTINE WFCON
IMPLICIT REAL#8 (A-H,0-2)
COMMOE/MEDAM2/ECMB(6,6) ,ECFB(6,6)
COMMON/WFCON1/WF(6,6)
COMMOB/QCOE1/Q(6,6)
COMMDE/DFEC1 /DFEC (6 ,6)

DIMENSION DFEC(6,6)

DFEC(1,1)=ECFB(1,1)~ECMB(1,1)
DFEC(1,2)=ECFB(1,2)~ECMB(1,2)
DFEC(1,3)=ECFB(1,3)~-ECMB(1,3)
DFEC(2,1)=DFEC(1,2)

DFEC(3,1)=DFEC(1,3)

DFEC(2,2)=ECFB(2,2)-ECMB(2,2)
DFEC(2,3)=ECFB(2,3)-ECMB(2,3)
DFEC(3,2)=DFEC(2,3)

DFEC(3,3)=ECFB(3,3)~ECMB(3,3)
DFEC(4,4)=ECFB(4,4)-ECMB(4,4)
DFEC(5,5)=ECFB(5,5)~ECMB(5,5)

. DFEC(6,6)=ECFB(6,6)-ECMB(6,6)

CALL ATIMB(WF,Q,DFEC)

WF(1,1)=1.DO+WF(1,1)
WF(2,2)=1.DO+WF(2,2)
WF(3,3)=1.DO+NF(3,3)
WF(4,4)=1.DO+WF(4,4)
WF(5,5)=1.DO+NF(5,5)
WF(6,6)=1.DO+WF(6,6)

CALL AIINV(WF)

RETURN
ERND

BFECOSX

SUBROUTIRE BFECON
IMPLICIT REAL#*8 (A-H,0-2)
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COMMOX/BFECOX1/BFE(6,6)
COMMOE/BMECON1/BME(6,6)
COMMON/WFCON1/¥WF (6,6)

CALL ATIMB(BFE,WF,BME)

RETURE
END

BMECGOEX

10

SUBROUTINE BMECON(CM,CF)
INPLICIT REAL*8 (A-H,0-2)
COMMON/BMECON1/BME(6,6)
COMMON/WFCON1/WF(6,6)

DO 10 I=1,6
DO 10 J=1,6
BME(I,J)=CF*WF(I,J)

BME(1,1)=CM+BME(1,1)

"BME(2,2)=CM+BME(2,2)

BME(3,3)=CM+BME(3,3)
BME(4,4)=CM+BME(4,4)
BME(5,5)=CM+BME(5,5)
BME(6,6)=CM+BME(6,6)

CALL AIINV(BME)

BRETURN
END

BECOUN

SUBROUTINE BECOE (CM,CF)
INPLICIT REAL#8 (A-H,0-Z)

CALL QCONCEN

CALL WFCON

CALL BMECON(CM,CF)
CALL BFECON

RETURE
END

BPCOE

SUBROUTINE BPCON(PSMB,CM,CF)
IMPLICIT REAL*8 (A-K,0-2Z)
DIMEESION PSHMB(6,6)

CALL PQCONCEN (PSMB)
CALL PWFCON(PSMB)
CALL BMECDN(CM,CF)
CALL BFECON

BETURE
END

PQCONCEN

SUBROUTINE PQCOECEN (PSMB)
INPLICIT REAL*8 (A-H,0-Z)
COMMON/QCON1/Q(6,6)
COMMON/PCOX1/P(6,6)
DIMENSION PSMB(6,6)
DIMENSION EP(6,6),Q1(6,6)

CALL ATIMB(EP,PSMB,P)
CALL ATIMB(Q1,EP,PSMB)
CALL SUBMT(Q,PSHB,Q1)

RETURN
END

PYFCOX

SUBROUTINE PWFCON(PSMB)
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INPLICIT REAL*8 (A-H,0-2)
COMMON/NEDAM2/ECMB(6,6) ,ECFB(6,6)
COMMOR/WFCOR1/WF(6,6)
COMMON/QCOB1/Q(6,6)
COMMON/DFEC1/DFEC(6,6)

DIMENSION DFEC(6,6) ,PSMB(6,6) ,PCMB(6,6)

DO 10 I=1,6
D0 10 J=1,6

10  PCMB(I,J)=PSMB(I,J)
CALL AIINV(PCMB)

D0 20 I=1,6
D0 20 J=1,6
20  DFEC(I,J)=ECFB(I,J)-PCMB(I,J)

CALL ATIMB(WF,Q,DFEC)

WF(1,1)=1.DO+WF(1,1)
WF(2,2)=1.DO+NF(2,2)
WF(3,3)=1.DO+NWF(3,3)
WF(4,4)=1.DO+WF(4,4)
WF(5,5)=1.DO+NF(5,5)
WF(6,6)=1.DO+WF(6,6)

CALL AIINV(WF)

RETURK
END

ADCEOYXN

SUBROUTINE ADCON (DM ,DMM,DMF)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/AMECOR1/AME(6,6)
COMMON/AFECON1/AFE(6,6)

DIMENSION DM(6,6) ,DMM(6,6) ,DMF(6,6)
DIMEESIOKN DMI(6,6)

DIMEESICHE TEMP1(6,6),TEMP2(6,6)

CALL DMIKV(DMI,DM)

CALL ATIMB(TEMP1,AME,DMI)
CALL ATIMB(TEMP2,AFE,DMI)
CALL ATIMB(AME,DMM,TEMP1)
CALL ATIMB(AFE,DMF,TEMP2)

RETURK
END

BDCOX

SUBROUTINE BDCON(DM,DMM,DMF)
IMPLICIT REAL*8 (A-H,0-2)

COMMOB /BMECON1/BME(6,6)
COMMON/BFECON1/BFE(6,6)

DIMENSION DM(6,6) ,DMM(6,6) ,DKF(6,6)
DINENSION DMMI(6,6) ,DMFI(6,6)
DIMENSION TEMP1(6,6),TEMP2(6,6)

CALL DMIEV(DMMI,DMM)

CALL DMIEV(DMFI,DMF)

CALL ATIMB(TEMP1,BME,DM)
CALL ATIMB(TEMP2,BFE,DM)
CALL ATIMB(BME,DMMI,TEMP1)
CALL ATIMB(BFE,DMFI,TEMP2)

RETURN
END

OVDMNG

SUBROUTINE OVDMG(DM,DMM,DMF,BME,BFE,CM,CF)

THIS SUBPROGRAM CALCULATES THE OVERALL DAMAGE EFFECT TENSOR M(I,J)

INPLICIT REAL*8 (A-H,0-2)

DIMEESIOK DM(6,6) ,DMM(6,6) ,DNF(6,6) ,BME(6,6) ,BFE(6,6)

DIMEESION TEMP1(6,6),TEMP2(6,6)
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CALL ATIMB(TEMP1,DMM,BME)
CALL ATIMB(TEMP2,DNF,BFE)
D0 10 I=1,6
D0 10 J=1,6
10  DM(I,J)=CM«TEMP1(I,J)+CF*TEMP2(I1,J)
BRETURN
END

VOLFRC

SUBROUTINE VOLFRC(CM,CF,PHIM,PHIF,CMO,CFO)
IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION PHIM(6) ,PHIF(6)

CM1=(1.DO-PHIM(1))/((1.DO-PHIM(1))+(1.DO-PHIF (1) )*CF0/CMO)
CF1=(1.DO-PHIF(1))/((1.DO-PHIM(1))*CMO/CFO+(1.DO-PHIF(1)))
CM2=(1.DO-PHIM(2))/((1.DO-PHIM(2))+(1.DO-PHIF (2))*CFO/CMO)
CF2=(1.DO-PHIF(2))/((1.DO-PHIN(2))#*CMO/CFO+(1.DO-PHIF(2)))
CM3=(1.DO-PHIM(4))/((1.DO-PHIN(4))+(1.DO-PHIF(4))*CF0/CMO)
CF3=(1.D0O-PHIF(4))/((1.DO-PHIM(4))*CMO/CFO+(1.DO-PHIF(4)))

CM=(CM1+CH2+CM3)/3.D0
CF=(CF1+CF2+CF3)/3.D0
RETURE

END

TRESTF

SUBROUTINE TRESTF(D,THETA)

THIS SUBPROGRAM CALCULATES THE LAMIBAE ELASTIC STIFFEESS
MATRIX IN THE LOADIEG DIRECTION

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION D(6,6),TP(6,6)
DIMENSION T(6,6),TT(6,6)

PI=4.0DO*DATAN (1.0D0)
RADIAN=THETA*PI/180.0DO
C=DCOS (RADIAR)
$=DSIK(RADIAK)

T(1,1)=C*C
T(1,2)=S*S
T(1,4)=-2.DO*C*S
T(2,1)=S8*S
T(2,2)=C*C
T(2,4)=2.D0*C*S
T(3,3)=1.D0
T(4,1)=C*S
T(4,2)=-C*S
T(4,4)=C%C-S*S
T(5,5)=C
T(5,6)=S
T(6,5)=-8
T(6,6)=C

TT(1,1)=C*C
TT(1,2)=5%S
TT(1,4)=C*S
TT(2,1)=54S
TT(2,2)=C*C
TT(2,4)=-C*S
TT(3,3)=1.D0
TT(4,1)=-2.DO%C*S
TT(4,2)=2.DO*C*S
TT(4,4)=C*C~S*S
TT(5,5)=C
TT(5,6)=-S
17(6,5)=8
T7(6,6)=C

CALL ATIMB(TP,T,D)
CALL ATIMB(D,TP,TT)

RETURE
END

EFECT1
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SUBROUTINE EFECT1(SB,DM,S)

-

COMPUTE EFFECTIVE STRESS

=t -

IMPLICIT REAL*8 (A-H,0-2)
DIMEESION SB(6) ,DM(6,6),5(6)
CALL MULV1i(SB,DM,S)

RETURK

EED

EFECT?2

SUBROUTINE EFECT2(DEB,DM,DE)

COMPUTE EFFECTIVE STRAIN

IMPLICIT REAL*8 (A-H,0-2)

DIMEESION DEB(6),DM(6,6) ,DMI(6,6),DE(6)
CALL DMINV(DMI,DM)

CALL MULVi1(DEB,DMI,DE)

RETURN

END

EFECTS33

10

20

SUBROUTINE EFECT3(BTDS,TDS,DMP,DM,DPHI,TSTRS)
IMPLICIT REAL*8 (A~K,0-Z)

DIMENSIOE BTDS(6),TDS(6),DMP(6,6,6) ,DM(6,6) ,DPHI(6) ,TSTRS(6)
DIMENSION XM(6,6) ,TEMP1(6) ,TEMP2(6)

DB 10 I=1,6

D0 10 J=1,6

XM(I,1)=0.D0

DO 10 K=1,6
XM(I,J)=XM(I,J)+DMP(I,J,K)+DPHI(K)

CALL MULV1(TEMP1,XM,KTSTRS)

CALL MULV1(TEMP2,DM,TDS)

DD 20 I=1,6

BTDS (I)=TEMP1 (I)+TEMP2(1)

RETURE

END

DELPLD

SUBROUTINE DELPLD(DP,DBAR,EI,DM,DMP,S)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION DP(6,6) ,DBAR(6,6) ,EI(6,6)

DIMENSION DM(6,6) ,DMI(6,6) ,DMP(6,6,6),T(6,6),5(6)
DIMENSION TEMP(6,6),X0(6,6)

CALL XODMG(XO,DBAR,DM,DMP,T,EI,S)
CALL AIINV(X0)

CALL DMIEV(DMI,DM)

CALL ATIMB(TEMP,DBAR,DMI)

CALL ATIMB(DP,XO,TEMP)

RETURN
END

X0DMG

10

SUBROUTIKE XODMG(X0,DBAR,DM,DMP,T,EI,S)

IMPLICIT REAL#8 (A-H,0-2)

DIMERSION X0(6,6) ,DBAR(6,6),EI(6,6),DM(6,6),DMP(6,6,6),T(6,6)
DIMENSION S(6),XA1(6,6),XA2(6,6) ,TEMP(6)

DIMENSION X(6,6,6),2(6,6,6)

CALL XZDMG(X,Z,T,DM,DMP)

PO 10 I
D0 10 J
X0(I,J)
DO 10 K
X0(I,J)

,6

,6

.DO

,6
0(I,J)+X(1,J,K)*S(K)

5O e

CALL MULV1(TEMP,EI,S)
D0 20 I=1,6
DO 20 J=1,6
XA1(I,J1)=0.DO
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DD 20 K=1,6
XA1(I,3)=XA1(I,1)+Z(1,J ,K)*TEKP(X)

CALL ATIMB(XA2,DBAR,XA1)
CALL SUBMT(XA1,XA,XA2)
DO 30 I=1,6

DO 30 J=1,6
XA1(I,J)=XA1(I,])

CALL ADMTX(XO,XA1,DM)
CALL TRANP(X0)

RETURN
E¥D

Qaaa

XZDMG

10

20

SUBROUTINE XZDMG(X,Z,T,DM,DMP)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION X(6,6,6),Z(6,6,6),T(6,6) ,DM(6,6) ,DMP(6,6,6)

DIMENSION DMIP(6,6,6)

X(1,J,K)=X(1,J,K)+DMP(1,J,L)*T(L,K)

CALL DMIPHI(DMIP,DMP,DM)

Z(1,3,K)
RETURK
END

1,J,K)+DMIP(I,J,L)*T(L,K)

aaaQ

DMIPHI
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SUBROUTINE DMIPHI(DMIP,DMP,DM)
IMPLICIT REAL*8 (A-H,0-2)

DINEESIOE DMIP(6,6,6),DMP(6,6,6),DM(6,6) ,DMI(6,6),TEMP(6,6,6)

CALL DMIEV(DMI,DM)

DO 10 M=1,6
DO 10 J=1,6

D0 10 K=1,6

TEMP(M,J,K)=0.D0

D0 10 L=1,6

TEMP(M,J ,K)=TEMP(M,J ,K)+DMP(M,L ,K)*DNI(L,J)
DO 20 I=1,6

DO 20 J=1,6

DO 20 K=1,6

DMIP(I,J,K)=0.D0

DO 20 M=1,6

DMIP(I,J,K)=DMIP(I,J K)+DMI(M,I)*TEMP(M,J,K)
D0 30 I=1,6

D0 30 J=1,6

DD 30 K=1,6

DMIP(I,J,K)=-DMIP(I,J,K)

RETURK

END

ELDAMG

T
M
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SUBROUTINE ELDAMG(ED,DM,E)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION ED(6,6) ,DM(6,6) ,E(6,6)
DIMENSION DMI(6,6) ,DMIT(6,6) ,DMIE(6,6)
CALL DMINV(DMI,DM)

HIS SUBPROGRAM CALCULATES THE DAMAGED ELASTIC STIFFEESS FOR
ATRIX OR FIBERS
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CALL TRANR(DMIT,DMI)
CALL ATIMB(DMIE,DMI,E)
CALL ATIMB(ED,DMIE,DMIT)
RETURN

END

EIDANMG

SUBROUTINE EIDAMG(EID,DM,EIB)

THIS SUBPROGRAM CALCULATES THE DAMAGED ELASTIC COMPLIANCE

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION EID(6,6) ,DM(6,6) ,EIB(6,6)
DIMENSION DMT(6,6) ,DMTE(6,6)

CALL TRANR(DMT ,DM)
CALL ATIMB(DMTE,DMT,EIB)
CALL ATIMB(EID,DMTE,DM)

RETURN
END

DMGCRT

SUBROUTIEE DMGCRT(G,Y,HI)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSIOE Y(6) ,HI(6)

CALL SCLVV(G,HI,Y)

G=G*G

RETURK

END

GDER

10

SUBROUTINE GDER(GY,GP,YP,PHI,Y,HI,Al1,A2,A3,B1,B2,B3)
INPLICIT REAL*8 (A-H,0-Z)

DIMENSION GY(6),GP(6),YP(6,6),PHI(6),Y(6) ,HI(6)

DIMENSION GH(6) ,HD(6,6) ,GP1(6) ,GP2(6)

DIMENSION XD(6,6) ,H1D(6) ,H2D(6) ,H3D(6) ,H4D(6) ,H5D(6) ,H6D(6)
DIMENSION X(6),DDT(6) ,HH(6,6)

CALL SCLVV(A,HI,Y)
DO 10 I=1,6
GY(I)=2.DO*A*HI(I)
GH(I)=2.DO*A*Y (1)

Hi=(A1*A1*PHI(1)+B1)
H2=(A2*A2*PHI(2)+B2)
H3=(A3*A3+PHI(3)+B3)
H4=(A1*A2*PHI(4))
H5=(A2#A3#PHI(5))
H6=(A1*A3%PHI(6))

HiD(1)=A1#A1+B1
H2D(2)=A2%A2-B2
H3D(3)=A3*A3-B3
H4D(4)=A1#*A2+((B1#B2)**0.5D0)
H5D(5)=A2#A3+((B2*B3)*%0.5D0)
H6D(6)=A1%A3+((B1%B3)**0.5D0)

DT=H1#H2*H3+2.DO*xH4*H5*H6-H1 *H5*H5~H2*H6*H6-H3+H4+H4
DDT(1)=H1D(1)#*H2*H3+H1*H2D(1)*H3+H1*H2+H3D(1)+
$2.D0* (HAD (1) #H5%H6) - (H1D(1) *H5%H5+2 . DO*H1#H5*H5D (1) ) -
$ (H2D (1) *H6*H6+2. DO*H2*H6+H6D (1) ) -
$(H3D(1)*H4*H4+2.DO*H3%H4%H4D (1))
DDT(2)=H1D(2)*H2+H3+H1#H2D (2)*H3+H1*H2*H3D(2)+
$2.D0* (H4D(2) #H5+H6) - (H1D(2) *H5*H5+2 . DO*H1*H5*H5D(2) )~
$ (H2D(2) *H6*H6+2 . DO*H2«H6*HED (2) ) -
$ (H3D(2) #*H4*H4+2. DO*H3+H4*H4D(2))
DDT(3)=H1D(3)*H2*H3+H1#H2D(3) *+H3+H1+H2*H3D(3)+
$2.D0* (H4D(3) #H5*H6) - (H1D(3) *HS*H5+2 . DO*H1#H5+H5D(3) ) -
$(H2D(3) *H6*H6+2 . DO*H2*«H6*HED (3) )~
$(H3D(3) #H4*H4+2 . DO*H3#H4*H4D (3))
DDT(4)=H1D(4)*H2*H3+H1*H2D(4)*H3+H1*H2+H3D(4)+
$2.D0* (H4D (4) «*HS*H6) - (H1D(4)*HS5*H5+2 . DO*H1*H5%H5D (4) ) -
$(H2D(4) *HE6+H6+2 . DO*H2*xH6#HED (4) )~
$ (H3D(4)*H4*H4+2 . DO*H3*H4*H4D(4))
DDT(5)=H1D(5)*H2*H3+H1i*H2D(5)*H3+H1*H2*H3D(5)+

127



aQa

20

30

$2.D0* (H4D(5) *H5*H6) - (H1D(5) »H5#H5+2 . DO*xH1*H5*H5D(5) ) -
$(H2D (5) *H6*H6+2 . DO*H2*HE6*HED (5) ) -
$(H3D(5)*H4*H4+2 . DO*H3%HA*H4D(5))

DDT (6)=H1D(6)*H2%H3+H1*H2D (6)*H3+H1%H2+H3D(6)+

$2.D0* (H4D (6) #H5*H6) - (H1D(6) *H5*H5+2 . DO*H1*H5*H5D(6) )~
$(H2D(6) *H6+H6+2 . DO*H2«HE6*HED (6) ) -

$ (H3D(6)*H4a*H4+2 . DO*H3*H4*H4D(6))

XD(1,1)=H2D(1)*H3+H2#*H3D(1)-2.DO*H5*H5D (1)
XD(1,2)=H2D(2)*H3+H2+H3D(2)~2.DO*H5*H5D (2)
XD(1,3)=H2D(3) *H3+H2#H3D(3)-2.DO*H5*H5D(3)
XD(1,4)=H2D(4) *H3+H2*H3D(4)-2.DO*H5+H5D (4)
XD(1,5)=H2D(6) *H3+H2*H3D(5)-2.DO*H5*H5D(5)
XD(1,6)=H2D(6) *H3+H2*H3D(6)~-2.DO*H5*H5D (6)
XD(2,1)=H1D(1)*H3+H1*H3D(1)-2.DO*H6+H6D (1)
XD(2,2)=H1D(2)*H3+H1*H3D(2)-2.DO*xH6%H5D(2)
XD(2,3)=H1D(3) *H3+H1*H3D(3)-2.DO*H6+H5D (3)
XD(2,4)=H1D(4)*H3+H1*H3D(4)~-2.DO*H6*H5D (4)
XD(2,5)=H1D(5)*H3+H1*H3D(5)-2.DO*HE*HED(5)
XD(2,6)=H1D(6)*H3+H1*H3D(6)~-2.DO*H6*H5D (6)
XD(3,1)=H1D(1)*H2+H1#H2D(1)-2.DO*H4*H6D (1)
XD(3,2)=H1D(2) *H2+H1#H2D(2)~-2.DO*H4*H5D(2)
XD(3,3)=H1D(3) *H2+H1*H2D(3)~2.DO*H4*H5D(3)
XD(3,4)=H1D(4)*H2+H1*H2D(4)-2.DO*H4*H5D(4)
XD(3,5)=H1D(5)*H2+H1i*H2D(5)~2.DO*H4*H5D(5)
XD(3,6)=H1D(6)*H2+H1*H2D(6)-2.DO*H4*H5D(6)
XD(4,1)=H5D(1)*H6+H5+%H6D(1)-H3D (1) *H4-H3*H4D (1)
XD(4,2)=H5D(2) *H6+H5%H6D(2)-H3D(2) *H4-H3*H4D(2)
XD(4,3)=H5D(3) *H6+H5*H6D(3) ~H3D (3) *H4-H3*H4D(3)
XD(4,4)=H5D(4) *H6+H5%H6D(4)-H3D (4) *H4-H3%H4D(4)
XD(4,5)=H5D(5) *H6+H5+H6D(5)-H3D(5) *H4-H3*H4D(5)
XD(4,6)=H5D(6) *HE6+H5+«H6D(6)-H3D (6) *H4~-H3*H4D(6)
XD(5,1)=H4D (1) *H6+H4*H6D(1)-H1D(1) *H5-H1*H5D (1)
XD(5,2)=H4D(2) *H6+H4*H6D(2)-H1D(2) *H5-H1+H5D(2)
XD(5,3)=H4D(3) *H6+H4*H6D(3)-H1D(3) *H5-H1*H5D(3)
XD(5,4)=H4D(4) *H6+H4+H6D(4)-H1D(4) *H5-H1+H5D (4)
XD(5,5)=H4D(5) *H6+H4*H6D(5)-H1D(5) *H5-H1»H5D (5)
XD(5,6)=H4D(6) *H6+H4*H6D(6)~H1D(6) *H5~-H1*H5D (6)
XD(6,1)=H4D (1) *H5+H4*H5D(1)-H2D (1) *H6-H2*H6D (1)
XD(6,2)=HAD(2) *H5+H4*H5D(2)-H2D(2) *H6-H2+H6D (2)
XD(6,3)=H4D(3) *H5+H4*+H5D(3)~H2D (3) *H6~-H2*H6D (3)
XD(6,4)=H4D (4) *H5+H4*H5D(4)~H2D (4) *H6-H2%H6D (4)
XD(6,5)=H4D (5) *H5+H4*H5D(5) -H2D(5) «H6~H2+H6D (5)
XD(6,6)=H4D(6) *H5+H4*H5D(6)-H2D (6) *H6~H2*HED (6)

X(1)=H2*H3-H5*H5
X(2)=H1*H3-H6*H6
X(3)=H1*H2-H4*H4
X(4)=HS5*H6-H3*H4
X(5)=H4*H6-Hi*H5
X(6)=H4*H5~H2*H6

DO 20 1=1,6
DO 20 J=1,6
HD(I,J)=(XD(I,J)*DT-X(I)*DDT(J))/(DT*DT)

CALL MULV1(GP1,HD,GH)
CALL MULV1(GP2,YP,GY)
D0 30 I=1,6

GP(I)=(GP1(1)+GP2(1))

RETURK
END

YDER

SUBROUTINE YDER(YSIG,YPHI,PHI,DM,DNP,S,EI)

IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION YSIG(6,6) ,YPHI(6,6),PHI(6),DM(6,6) ,DMP(6,6,6)
DIMERSION S(6),EI(6,6) ,DMT(6,6)

DIMERSION YS1(6),¥YS2(6),YS3(6),YS4(6)

DIMEBSION X(6,6),XT(6,6),TEMP(6)

DIMEBSION DMP2(6,6,6,6),X1(6,6),YP1(6,6) ,YP2(6,6)
DIMEESION T1(6,6),TT1(6,6),T2(6,6),TT2(6,6)

CALL ATIMB(T1,EI,DM)
CALL TRANR(TT1,T1)
CALL TRANR(DMT,DM)
CALL ATIMB(T2,DMT,EI)
CALL TRANR(TT2,T2)
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20

10

60

50
40

85

80
70

D0 10 1J=1,6

DO 15 I=1,6

p0 15 J=1,6
X(1,J)=DMP(I1,J,1J)
CALL TRANR(XT,X)

CALL MULV1(TEMP,T1,S)
CALL MULV1(YS1,XT,TEMP)

CALL MULV1i(TEMP,X,S)
CALL MULV1(YS2,TTi,TEMP)

CALL MULVi(TEMP,X,S)
CALL MULV1(YS3,T2,TEMP)

CALL MULV1(TEMP,TT2,S)
CALL MULV1(YS4,XT,TEMP)

D0 20 K=1,6

YSIG(K,1J3)=0.5D0*(YS1(K)+YS2(K)+YS3(K)+YS4(K))

CONTINUE

CALL MDPH2(DMP2,PHI)
D0 40 I=1,6

P00 50 J=1,6

D0 60 K=1,6

DO 60 L=1,6
X(X,L)=DMP2(K,L,I,J)

CALL MULV1(YS1,X,S)
CALL MULV1(YS2,YS1,ED)
CALL MULV1(YS1,DM,S)
CALL SCLVV(A1,YS2,YS1)

CALL MULV1(YS1,DM,S)
CALL MULV1(YS2,YS1,EI)
CALL MULV1(YS3,X,S)
CALL SCLVV(B1,YS2,YS3)

YP1(I,J)=0.5D0*(A1+B1)
CONTINUE
CONTINUE

bo 70 I=1,6

DO 75 K1=1,6
D0 75 L1=1,6
X(K1,L1)=DMP(K1,L1,1)

Do 80 J=1,6

DD 85 K2=1,6
DO 85 L2=1,6
X1(K2,L2)=DMP(K2,L2,J)

CALL MULV1(YS1,X,S)
CALL MULVi(YS2,X1,S)
CALL MULV1(YS3,EI,¥S2)
CALL SCLVV(A2,YS1,YS3)

CALL MULV1(YS1,X1,S)
CALL MULV1(YS2,YS1,EI)
CALL MULV1(YS3,X,S)
CALL SCLVV(B2,YS2,YS3)

YP2(1,J)=0.5D0*(A2+B2)
CONTINUE

CONTINUE

CALL ADMTX(YPHI,YP1,YP2)

RETURE
EED

DMGHAR
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SUBROUTINE DMGHAR(HI,A1,A2,A3,B1,B2,B3,PHI,HK,R1,R2,R3,Q1,02,Q3

$,U1,U2,U3,V1,V2,V3)
IMPLICIT REAL#*8 (A-H,D-Z)
DIMENSION HI(6),PHI(6)

A1=DSQRT(Ui*Qi*( (HK/U1)**R1))
A2=DSQRT(U2#Q2*((HK/U2)**R2))
A3=DSQRT (U3#»Q3*( (HK/U3)**R3))

Bi=U1*V1i#*V1
B2=U2*V2*V2
B3=U3#*V3#*V3

Hi=(A1*A1#PHI(1)+B1)
H2=(A2%A2*PHI(2)+B2)
H3=(A3+A3*PHI(3)+B3)
H4=(A1+A2+PHI(4))
H5=(A2+A3+PHI(5))
H6=(A1#A3*PHI(6))

DT=H1#H2#H3+2.DO*H4*H5*H6-H1*H5*xH5-H2*H6*H6-H3*H4*H4

HI(1)=(H2*H3-H5#HS) /DT
HI(2)=(H1*H3-H6%H6)/DT
HI(3)=(H1*H2-H4*H4) /DT
HI(4)=(H5%«H6-H3%H4) /DT
HI(5)=(H4*H6-H1*H5) /DT
HI(6)=(H4*H5-H2*H6) /DT
RETURN

END

DMGFRC

SUBROUTINE DMGFRC(Y,DM,DMP,S,EI)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(6),DM(6,6) ,DMP(6,6,6),5(6),EI(6,6)
DIMENSION X(6,6),TEMP1(6) ,TEMP2(6)

D0 10 K=1,6

Do 20 I=1,6

DO 20 J=1,6

20 X(I,J)=DMP(I,J,K)

CALL MULV1(TEMP1,DM,S)
CALL MULV1(TEMP2,EI,TEMP1)
CALL MULV1(TEMPi,X,S)

CALL SCLVV(A,TEMP1,TEMP2)
CALL MULV1(TEMP1,X,S)

CALL MULV1(TEMP2,EI,TEMP1)
CALL MULV1(TEMP1,DM,S)
CALL SCLVV(B,TEMP1,TEMP2)
Y(K)=0.5D0* (A+B)

10 CONTINUE

aaaq

aQa

aaQa

RETURNE
END

DMGHEK

SUBROUTINE DMGHK(HK,Y,DPHI)
IMPLICIT REAL#*8 (A-H,0-Z)
DIMEESIDRF Y(6) ,DPHI(6)

CALL SCLVV(DHK,Y,DPHI)
HK=HK+DHK

RETURE

EED

CALDMG

SUBROUTINE CALDMG(PHI,DM,XMP,S,DS,EI ,HK,Y,HI ,A1,A2,A3

$,B1,B2,B3,CFAIL)
THIS SUBROUTINE CALCULATES THE DAMAGE VARIABLES

IMPLICIT REAL*8 (A-H,0-Z)

CHARACTER*1 CFAIL

DIMENSION PHI(6),D(6,6),DM(6,6) ,XMP(6,6,6)
DIMENSION 5(6),DS(6),EI(6,6),Y(6),HI(6)
DIMENSION GY(6),GP(6)

DIMEESION A(6,6),B(6,6),C(6,6),AC(6,6) ,TEMP(6,6)

CALL YDER(B,C,PHI,DM,XMP,S,EI)
CALL GDER(GY,GP,C,PHI,Y,HI,A1,A2,A3,B1,B2,B3)
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CALL SCLVV(GPY,GP,GY)
po 20 I=1,6
D0 20 J=1,6

20  A(I,J)=GY(I)*GY(J)/GPY
CALL ATIMB(AC,A,C)
D0 30 1=1,6
DO 30 J=1,6
IF (I.EQ.J) THEN

D(I,J)=1.D0-AC(I,J)
ELSE
D(I,J)=-AC(I,J)

END IF

30 CONTINUE
CALL ATINV(D)
CALL ATIMB(TEMP,D,A)
CALL ATIMB(D,TEMP,B)
CALL TRANP(D)
CALL MULV1(DPHI,D,DS)
DO 40 I=1,6

40  PHI(I)=PHI(I)+DPHI(I)

CALL DMGHK(HK,Y,DPHI)
CALL RUPTR(PHI,CFAIL)
RETURE

EED

RUPTR

aaaa

SUBROUTINE RUPTR(PHI,IRUP)

(o}

IMPLICIT REAL*8 (A-H,0-Z)
CHARACTER#*1 IRUP
DIMENSIOE PHI(6)

PHIMAX1=0.5D0* (PHI(1)+PHI(2))

PHIMAX2=PHI (1)~PHI(2)

PHIMAX3=PHI (4)*PHI(4)
PHIMAX=PHIMAX1+(PHIMAX2*PHIMAX2%0.25DO+PHIMAX3) *#*0.5D0

IF(PHIMAX.GT.0.99) THEN
PHI(1)=0.
PHI(2)=0.
PHI(3)=0.
PHI(4)=0.
PHI(5)=0.
PHI(6)=0.

END IF

© WO OOO

RETURN
END

TRAENER

aaoa

SUBROUTIEE TRANR(B,A)

THIS SUBPROGRAM CALCULATES THE TRANSPOSE OF A MATRIX “A"
STORING IT IN THE ARRAY "B"

aaaaa

IMPLICIT REAL*8 (A-H,0-2)
DIMENSIOKN A(6,6),B(6,6)

D0 10 I=1,6
DO 10 J=1,6
10 B(J,I)=A(I,d)

RETURN
END

TRANP

QaQa

SUBROUTINE TRANP(A)
c
C THIS SUBPROGRAM CALCULATES THE TRANSPOSE OF A SQUARE MATRIX
C “A" STORING IT IN ITSELF

C
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(6,6)
§=6

C
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§i=§-1

DO 10 I=1,N1

I1=I+1

DO 10 J=I1,N

S=A(1,J)

AT, D=A(QJ,T)
10 AQJ,I)=S

RETURN
END

ADMTX

aaaQo

SUBROUTINE ADMTX(C,A,B)
c
C THIS SUBPROGRAM CALCULATES THE MATRIX OPERATIOE
c
IMPLICIT REAL#*8 (A-H,0-Z)
DINENSION A(6,6),B(6,6),C(6,6)
DO 10 I=1,6
D0 10 J=1,6
10 C(1,J)=A(I,J)+B(I,))
COETINUE
RETURE
END

SUBMT

aaa

SUBROUTINE SUBMT(C,A,B)

THIS SUBPROGRAM CALCULATES THE MATRIX OPERATIOE

Qoo

IMPLICIT REAL#*8 (A-H,0-2)
DIMEESION A(6,6),B(6,6),C(6,6)
D0 10 I=1,6
D0 10 J=1,6
c(I,3)=A(J,1)-B(1,J)

10  CONTINUE
RETURE
EED

ATIMB

aaa

SUBROUTINE ATIMB(C,A,B)

THIS SUBPROGRAM CALCULATES THE MATRIX OPERATIOE C = A * B
B : ACTUAL EUMBER OF ROWS OF A AND C

M : ACTUAL HUMBER OF COLUMES OF A AED ROWS OF B

L : ACTUAL EUMBER OF COLUMES OF B AND C

aaaaaa

IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION A(6,6),B(6,6),C(6,6)

C
Do 10 I=1,6
D0 10 J=1,6
€(1,1)=0.D0
D0 10 K=1,6
10 €(I,3)=C(I,))+A(I,K)*B(K,J)
C
RETURE
ERD
C
C ATIMB3
c
SUBROUTIEE ATIMB3(C,4,B)
C

C THIS SUBPROGRAM CALCULATES THE MATRIX OPERATION C = A * B
C

IMPLICIT REAL#*8 (A-H,0-Z)

DIMENSION A(3,3),B(3,3),C(3,3)

c
DO 10 1I=1,3
PO 10 J=1,3
¢(1,1)=0.D0
D0 10 K=1,3
10 ©(I,J)=C(I,J)+A(I,K)*B(K,J)
c
RETURE
END
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MULV1

SUBROUTINE MULV1i(C,A,B)

HIS SUBPROGRAM CALCULATES THE MATRIX OPERATION
= A = B, WHERE B IS A VECTOR
: ACTUAL NUMBER OF ROWS A
: ACTUAL NUMBER OF COLUMNS OF A AKD OF ROWS OF B

aaaoaoaaq aaa
L Re Nl

INPLICIT REAL*8 (A-H,0-Z)
DIMERSION A(6,6),B(6),C(6)
D0 10 1=1,6

€(1)=0.D0

D0 10 J=1,6
C(I)=C(I)+A(I,J)*B(J)
RETURN

EED

-
(=]

MULV?2

SUBROUTINE MULV2(C,A,B)

HIS SUBPROGRAM CALCULATES THE MATRIX OPERATICHE
= A *x B, WHERE A IS A VECTOR
: ACTUAL NUMBER OF COLUMES OF A
: ACTUAL EUMBER OF COLUMES OF B AND OF ROWS OF B

aaaaaoaa aaoa
=EO

IMPLICIT REAL#8 (A-H,0-Z)
DIMERSION A(6),B(6,6),C(6)
D0 10 I=1,6
¢(1)=0.D0
DO 10 J=1,6

10 C(I)=C(I)+A(J)*B(J,I)
RETURN
END

MULVYV

Qoo

SUBROUTINE MULVV(C,A,B)

HIS SUBPROGRAM CALCULATES THE MATRIX OPERATIOR

T
c A * B, WHERE A AND B IS A VECTOR

aoaaQ

IMPLICIT REAL*8 (A-H,0-2)
DIMEESION A(6),B(6),C(6,6)
b0 10 I=1,6
D0 10 J=1,6

10 C(1I,1)=A(1)*B(J))
RETURE
END

SCLVYV

aaQa

SUBROUTINE SCLVV(C,A,B)

HIS SUBPROGRAM CALCULATES THE MATRIX OPERATIOE

T
c A * B, WHERE A AND B IS A VECTOR, AED C IS SCALAR

anooao

IMPLICIT REAL#*8 (A-H,0-2)

DIMENSIOR A(6),B(6)

€=0.D0

D0 10 I=1,6

IF (I.GE.4) THEN
C=C+2.DO*A(I)*B(I)

ELSE
C=C+A(I)*B(I)

END IF

16  COETINUE

RETURR
END

AIINRYV

aaaQ

SUBROUTINE AIINV(A)
INPLICIT REAL*8 (A-H,0-2)
DIMEESION A(6,6)

§=6
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aan

D0 26 I=1,X
CoN=A(I,I)
D0 2 J=1,8
2 A(X,3)=A(1,J)/CON
A(I,1)=1.D0/COB
DO 26 J=1,¥
IF(J-I) 4,26,4
4 D0 36 K=1,X
IF(k-1) 5,36,5
5 A(J,K)=A(J,K)-ACI,K)*A(J,1)
36 CONTINUE
AQJ,D)=-A(I,D*AJ,I)
26 CONTINUE

RETURE
END

AIINV3

SUBROUTINE AIINV3(A)
IMNPLICIT REAL#*8 (A-H,0-Z)
DIMENSION A(3,3)

¥=3
D0 10 I=1,¥

CON=A(I,I)
D0 15 J=1,8

15 A(I,))=A(I,l))/CON

A(I,1)=1.DO/COE
PO 10 J=1,8
IF(J-1) 5,10,5
bD 20 kK=1,§
IF(K-I) 6,20,6

6 A(J,K)=A(J,K)-A(1,K)*A(J, 1)

Qaaaa Qaa

[sKeK2}
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Pt et

20 CONTINUE

ACQJ,I)=-A(1,1)*A(J, 1)
10 CONTINUE

RETURN
EED

CODNVER

SUBROUTINE COBVER(D2,D3)

THIS PROGRAM TRANSFORMS THE FOURTH ORDER STIFFEESS
TENSOR TO A SECOND ORDER MATRIX FOR PLABE STRESS

IMPLICIT REAL#8 (A-H,0-2)
DIMENSION D2(6,6),D3(6,6)

p2(1,1)=D3(1,1)-b3(1,3)*D3(3,1)/D3(3,3)
D2(1,2)=D3(1,2)-D3(1,3)*D3(3,2)/D3(3,3)
D2(1,3)=D3(1,4)-P3(1,3)*D3(3,4)/D3(3,3)
D2(2,1)=D3(2,1)-D3(2,3)*D3(3,1)/D3(3,3)
D2(2,2)=D3(2,2)-D3(2,3)*D3(3,2)/D3(3,3)
D2(2,3)=D3(2,4)-D3(2,3)*D3(3,4)/D3(3,3)
D2(3,1)=D3(4,1)-D3(4,3)*D3(3,1)/D3(3,3)
D2(3,2)=D3(4,2)-D3(4,3)*D3(3,2)/D3(3,3)
D2(3,3)=D3(4,4)-D3(4,3)*D3(3,4)/D3(3,3)
p2(1,2)=(D2(1,2)+D2(2,1))*0.5D0
D2(2,1)=D2(1,2)
D2(1,3)=(D2(1,3)+D2(3,1))*0.5D0
Dp2(3,1)=D2(1,3)
D2(2,3)=(D2(2,3)+D2(3,2))*0.5D0
D2(3,2)=D2(2,3)

RETURN

END

DMAGE1

SUBROUTINE DMAGE1 (DM,PHI)

THIS SUBPROGRAM CALCULATES THE DAMAGE EFFECT TEESOR M(I,J) AND
THE DERIVATIVE DAMAGE TENSOR WITH RESPECT TO DAMAGE VARIABLES

INPLICIT REAL*8 (A-H,0-Z)
DIMEESION DM(6,6) ,PHI(6),F(6,6)
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10 DM(I,J

P1=1.DO-PHI(1)

P2=1.D0-PHI(2)

P3=1.DO-PHI(3)

P4=PHI (5)*PHI(5)*P1

P5=PHI (6)*PHI(6)*P2

P6=PHI (4)*PHI(4)*P3
P7=2.DO*PHI (4)*PHI (5)*PHI(6)
G=2.D0*(P1*P2sP3~P4-P5-P6-P7)

F(1,1)=2.D0*(P2%P3-PHI(5)*PHI(5))
F(1,4)=2.DO*(PHI(6)*PHI(5)+PHI (4)*P3)
F(1,6)=2.DO*(PHI (4) *PHI(5)+PHI(6)*P2)

F(2,2)=2.D0*(P1#P3-PHI (6) *PHI(6))
F(2,4)=F(1,4)
F(2,5)=2.D0* (PHI (4)*PHI (6)+PHI(5)*P1)

F(3,3)=2.D0* (P1+P2-PHI (4)*PHI(4))
F(3,5)=F(2,5)
F(3,6)=F(1,6)

F(4,1)=0.5DO#F(1,4)

F(4,2)=F(4,1)

F(4,4)=P2%P3+P1#P3-PHI (5) *PHI (5)-PHI (6) *PHI (6)
F(4,5)=0.5DO*F(1,6)

F(4,6)=0.5DO+F(2,5)

F(5,2)=0.5D0O*F(2,5)

F(5,3)=F(5,2)

F(5,4)=0.5D0*F(1,6)
F(5,5)=P1*P3+P1*P2-PHI(6)*PHI(6)-PHI(4)*PHI(4)
F(5,6)=0.5D0*F(1,4)

F(6,1)=F(5,4)
F(6,3)=F(6,1)
F(6,4)=F(5,2)
F(6,5)=F(5,6)
F(6,6)=P2%P3+P1%P2-PHI(5)*PHI(5)-PHI (4)*PHI(4)

RETURE
END

DMAGE?2

SUBROUTIBE DMAGE2(DM,XMPHI ,PHI)

THIS SUBPROGRAM CALCULATES THE DAMAGE EFFECT TEESOR M(I,J) AND
THE DERIVATIVE DAMAGE TENSOR WITH RESPECT TO DAMAGE VARIABLES

IMPLICIT REAL#*8 (A-H,0-Z)
DIMENSION DM(6,6) ,XMPHI(6,6,6) ,PHI(6),F(6,6),F1(6,6,6)
DIMEBSION G1(6)

P1=1.DO-PHI(1)

P2=1.DO-PHI(2)

P3=1.DO-PHI(3)

P4=PHI (5)*PHI(5)*P1

P5=PHI (6)*PHI(6)*P2

P6=PHI (4)*PHI(4)*P3
P7=2.DO*PHI (4)*PHI(5)*PHI (6)
G=2.DO* (P1*P2#P3-P4-P5-P6~P7)

G1(1)=-2.DO*(P2*P3-PHI (5)*PHI(5))
G1(2)=-2.D0*(P1+P3~PHI(6)*PHI(6))
G1(3)=-2.,DO*(P1*P2-PHI (4)*PHI(4))
G1(4)=-4.DO0* (PHI (4)%P3+PHI (5)*PHI(6))
G1(5)=-4.DO* (PHI(5)*P1+PHI(4)*PHI(6))
G1(6)=-4.D0* (PHI(6)*P2+PHI(4)*PHI(5))

F(1,1)=2.D0*(P2#P3-PHI (5)*PHI(5))
F(1,4)=2.D0#* (PHI(6)*PHI(5)+PHI(4)*P3)
F(1,6)=2.D0*(PHI (4)*PHI (5)+PHI (6) *P2)

F(2,2)=2.D0* (P1*P3-PHI(6)*PHI(6))
F(2,4)=F(1,4)
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F(2,5)=2.D0#*(PHI (4)*PHI (6)+PHI(5)*P1)

F(3,3)=2.D0*(P1+P2-PHI(4)*PHI(4))
F(3,5)=F(2,5)
F(3,6)=F(1,6)

F(4,1)=0.5D0*F(1,4)

F(4,2)=F(4,1)
F(4,4)=P2#P3+P1*P3-PHI(5)*PHI(5)-PHI(6)*PHI(6)
F(4,5)=0.5D0*F(1,6)

F(4,6)=0.5D0*F(2,5)

F(5,2)=0.5D0*F(2,5)

F(5,3)=F(5,2)

F(5,4)=0.5D0*F(1,6)

F(5,5)=P1%P3+P1#P2-PHI (6)*PHI(6)-PHI (4)*PHI(4)
F(5,6)=0.5D0*F(1,4)

F(6,1)=F(5,4)
F(6,3)=F(6,1)
F(6,4)=F(5,2)
F(6,5)=F(5,6)
F(6,6)=P2#P3+P1*P2-PHI (5)*PHI(5)-PHI (4)*PHI(4)

DO 10 I=1,6
D0 10 J=1,6
DM(I,J)=F(1,3)/G

F1(1,1,2)=2.D0*(~-P3)
F1(1,1,3)=2.D0*(~P2)
F1(1,1,5)=-4.DO*PHI(5)

F1(1,4,3)=2.D0*(~PHI(4))
F1(1,4,4)=2.DO*P3
F1(1,4,5)=2.DO+PHI(6)
F1(1,4,6)=2.DO*PHI(5)
F1(1,6,2)=2.D0%(-PHI(6))
F1(1,6,4)=2.DO*PHI(5)
F1(1,6,5)=2.DO*PHI(4)
F1(1,6,6)=2.DO*P2

F1(2,2,1)=2.D0*(-P3)
F1(2,2,3)=2.D0*(-P1)
F1(2,2,6)=-4.DO*PHI (6)

F1(2,4,3)=F1(1,4,3)
F1(2,4,4)=F1(1,4,4)
F1(2,4,5)=F1(1,4,5)
F1(2,4,6)=F1(1,4,6)

F1(2,5,1)=2,D0%(~PHI(5))
F1(2,5,4)=2.DO*PHI(6)
F1(2,5,5)=2.D0*P1
F1(2,5,6)=2.DO*PHI(4)

F1(3,3,1)=2.D0x(-P2)
F1(3,3,2)=2.D0*(-P1)
F1(3,3,4)=-4.DO*PHI(4)

F1(3,5,1)=F1(2,5,1)
F1(3,5,4)=F1(2,5,4)
F1(3,5,5)=F1(2,5,5)
F1(3,5,6)=F1(2,5,6)

F1(3,6,2)=F1(1,6,2)
F1(3,6,4)=F1(1,6,4)
F1(3,6,5)=F1(1,6,5)
F1(3,6,6)=F1(1,6,6)

F1(4,1,3)=0.5D0*F1(1,4,3)
F1(4,1,4)=0.5D0%F1(1,4,4)
F1(4,1,5)=0.5D0*F1(1,4,5)
F1(4,1,6)=0.5D0%F1(1,4,6)

F1(4,2,3)=F1(4,1,3)
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F1(4,2,4)=F1(4,1,4)
F1(4,2,5)=F1(4,1,5)
F1(4,2,6)=F1(4,1,6)

F1(4,4,1)=-P3
F1(4,4,2)=-P3

F1(4,4,3)=-P2-P1
F1(4,4,5)=-2.DO*PHI(5)
F1(4,4,6)=-2.DO*PHI(6)

F1(4,5,2)=0.
F1(4,5,4)=0.
F1(4,5,5)=0.
F1(4,5,6)=0.

F1(4,6,1)=0.
F1(4,6,4)=0.
F1(4,6,5)=0.
F1(4,6,6)=0.

F1(5,2,1)=0.
F1(5,2,4)=0.
F1(5,2,5)=0.
F1(5,2,6)=0.

5D0*F1(1,6,2)
5DO*F1(1,6,4)
5DO*F1(1,6,5)
5DO*F1(1,6,6)

5D0*F1(2,5,1)
5DO*F1(2,5,4)
5DO*F1(2,5,5)
5DO*F1(2,5,6)

5D0*F1(2,5,1)
5D0*F1(2,5,4)
5D0*F1(2,5,5)
5D0*F1(2,5,6)

F1(5,3,1)=F1(5,2,1)
F1(5,3,4)=F1(5,2,4)
F1(5,3,5)=F1(5,2,5)
F1(5,3,6)=F1(5,2,6)

F1(5,4,2)=0.5D0*F1(1,6,2)
F1(5,4,4)=0.5D0*F1(1,6,4)
F1(5,4,5)=0.5D0*F1(1,6,5)
F1(5,4,6)=0.5D0%F1(1,6,6)

F1(5,5,1)=-P3-P2
F1(5,5,2)=-P1
F1(5,5,3)=-P1
F1(5,5,4)=-2.DO*PHI (4)
F1(5,5,6)=-2.DO*PHI (6)

F1(5,6,3)=0.5D0*F1(1,4,3)
F1(5,6,4)=0.5D0*F1(1,4,4)
F1(5,6,5)=0.5D0%F1(1,4,5)
F1(5,6,6)=0.5D0*F1(1,4,6)

F1(6,1,2)=F1(5,4,2)
F1(6,1,4)=F1(5,4,4)
F1(6,1,5)=F1(5,4,5)
F1(6,1,6)=F1(5,4,6)

Fi1(6,3,2)=F1(6,1,2)
F1(6,3,4)=F1(6,1,4)
F1(6,3,5)=F1(6,1,5)
F1(6,3,6)=F1(6,1,6)

F1(6,4,1)=F1(5,2,1)
F1(6,4,4)=F1(5,2,4)
F1(6,4,5)=F1(5,2,5)
F1(6,4,6)=F1(5,2,6)

F1(6,5,3)=F1(5,6,3)
F1(6,5,4)=F1(5,6,4)
F1(6,5,5)=F1(5,6,5)
F1(6,5,6)=F1(5,6,6)

F1(6,6,1)=-P2
F1(6,6,2)=-P3-P1
F1(6,6,3)=-P2
F1(6,6,4)=-2.DO*PHI(4)
F1(6,6,5)=-2.DO*PHI(5)

I
J
DD 20 K
I

XMPHI ( )=(F1(1,J,K)*G-F(I,J)*G1(K))/(G*G)

RETURKE
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END

DMINV

SUBROUTINE DMINV(DMI,DM)

THIS SUBPROGRAM CALCULATES THE INVERSE OF DAMAGE EFFECT TENSOR M I

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION DMI(6,6) ,DM(6,6)

DO 10 I=1,6
DO 10 J=1,6

10  DMI(I,J)=DM(I,J))

[}

Qaaa aaoaa

CALL AIIEV(DMI)

RETURKR
END

MDPH2

SUBROUTINE MDPH2(XMPH2,PHI)

I THIS SUBPROGRAM CALCULATES THE DERIVATIVE OF DAMAGE EFFECT TENSOR I

IMPLICIT REAL#*8 (A-H,0-Z)
DIMEBSIOF XMPH2(6,6,6,6),PHI(6),G1(6),F(6,6),F1(6,6,6)
DIMERSIOR F2(6,6,6,6),62(6,6)

P1=1.DO-PHI(1)

P2=1.DO-PHI(2)

P3=1.DO-PHI(3)
P4=PHI(5)*PHI(5)*P1
P5=PHI(6)*PHI(6)*P2

P6=PHI (4)*PHI(4)*P3
P7=2.DO*PHI(4)*PHI(5)*PHI(6)
G=2.DO* (P1%xP2%P3-P4-P5-P6-P7)
GG=G*»G

G4=GG*GG

G1(1)=-2.DO* (P2#P3~PHI (5) **2)
G1(2)=-2.D0*(P1#P3~-PHI (6) **2)
G1(3)=-2.D0*(P1%P2-PHI (4) *%2)
G1(4)=-4.D0*(PHI(4)*P3+PHI(5)*PHI(6))
G1(5)=-4.D0*(PHI(5)*P1+PHI (4)*PHI(6))
G1(6)=-4.D0*(PHI(6)*P2+PHI (4)*PHI(5))

G2(1,2)=2.DO*P3
G2(1,3)=2.DO*P2
G2(1,5)=4 .DO*PHI(5)

62(2,1)=2.D0*P3
G2(2,3)=2.DO*P1
62(2,6)=4 .DO*PHI (6)

G2(3,1)=2.D0*P2
G2(3,2)=2.D0*P1
G2(3,4)=4.DO*PHI(4)

G2(4,3)=4,DO*PHI (4)
G2(4,4)=-4.D0+P3

G2(4,5)=-4.D0*PHI (6)
G2(4,6)=-4.DO*PHI (5)

G2(5,1)=4 .DO*PHI(5)
G2(5,4)=-4.DO*PHI(6)
G2(5,5)=-4.D0*P1

G2(5,6)=-4.DO*PHI(4)

G2(6,2)=4.DO*PHI (6)
G2(6,4)=-4.D0*PHI(5)
G2(6,5)=-4.DO*PHI (4)
G2(6,6)=-4.D0*P2

F(1,1)=2.D0#* (P2*P3-PHI(5)*PHI(5))

F(1,4)=2.D0*(PHI(6)*PHI(5)+PHI(4)*P3)
F(1,6)=2.D0* (PKI (4) *PHI (5)+PHI(6)*P2)
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F(2,2)=2.D0*(P1#P3-PHI(6)*PHI(6))
F(2,4)=F(1,4)
F(2,5)=2.D0*(PHI(4)*PHI(6)+PHI(5)*P1)

F(3,3)=2.D0*(P1#P2~PHI (4)*PHI(4))
F(3,5)=F(2,5)
F(3,6)=F(1,6)

F(4,1)=0.5DO*F(1,4)

F(4,2)=F(4,1)
F(4,4)=P2+P3+P1%P3-PHI (5)*PHI (5)~PHI (6) *PHI(6)
F(4,5)=0.5DO*F(1,6)

F(4,6)=0.5D0F(2,5)

F(5,2)=0.5D0*F(2,5)

F(5,3)=F(5,2)

F(5,4)=0.5D0*F(1,6)
F(5,5)=P1*P3+P1*P2-PHI (6) *PHI(6)-PHI (4) *PHI(4)
F(5,6)=0.5D0*F(1,4)

F(6,1)=F(5,4)
F(6,3)=F(6,1)
F(6,4)=F(5,2)
F(6,5)=F(5,6)
F(6,6)=P2*P3+P1*P2-PHI (5)*PHI(5)-PHI(4)*PHI(4)

F1(1,1,2)=2.D0*(~P3)
F1(1,1,3)=2.D0%*(-P2)
F1(1,1,5)=-4.DO*PHI(5)

F1(1,4,3)=2.D0*(~PHI(4))
F1(1,4,4)=2.D0+P3
F1(1,4,5)=2.DO*PHI(6)
F1(1,4,6)=2.DO*PHI(5)
F1(1,6,2)=2.D0*(~PHI(6))
F1(1,6,4)=2.DO*PHI(5)
F1(1,6,5)=2.DO*PHI(4)
F1(1,6,6)=2.D0*P2

F1(2,2,1)=2.D0*(-P3)
F1(2,2,3)=2.D0*(-P1)
F1(2,2,6)=-4.DO*PHI(6)

F1(2,4,3)=F1(1,4,3)
F1(2,4,4)=F1(1,4,4)
F1(2,4,5)=F1(1,4,5)
F1(2,4,6)=F1(1,4,6)

F1(2,5,1)=2.D0*(-PHI(5))
F1(2,5,4)=2.DO*PHI(6)
F1(2,5,5)=2.D0*P1
F1(2,5,6)=2.DO*PHI(4)

F1(3,3,1)=2.D0*(-P2)
F1(3,3,2)=2.D0*(-P1)
F1(3,3,4)=-4.DO*PHI (4)

F1(3,5,1)=F1(2,5,1)
F1(3,5,4)=F1(2,5,4)
F1(3,5,5)=F1(2,5,5)
F1(3,5,6)=F1(2,5,6)

F1(3,6,2)=F1(1,6,2)
F1(3,6,4)=F1(1,6,4)
F1(3,6,5)=F1(1,6,5)
F1(3,6,6)=F1(1,6,6)

F1(4,1,3)=0.5D0*F1(1,4,3)
F1(4,1,4)=0.5D0*F1(1,4,4)
F1(4,1,5)=0.5D0*F1(1,4,5)
F1(4,1,6)=0.5D0*F1(1,4,6)

F1(4,2,3)=F1(4,1,3)
F1(4,2,4)=F1(4,1,4)
F1(4,2,5)=F1(4,1,5)
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F1(4,2,6)=F1(4,1,6)

F1(4,4,1)=-P3
Fi1(4,4,2)=-P3
F1(4,4,3)=-P2-P1
F1(4,4,5)=-2.DO*PHI(5)
F1(4,4,6)=~2.D0*PHI(6)

F1(4,5,2)=0.5D0#F1(1,6,2)
F1(4,5,4)=0.5D0*F1(1,6,4)
F1(4,5,5)=0.5D0*F1(1,6,5)
F1(4,5,6)=0.5D0%F1(1,6,6)

F1(4,6,1)=0.5D0*F1(2,5,1)
F1(4,6,4)=0.5D0*F1(2,5,4)
F1(4,6,5)=0.5D0*F1(2,5,5)
F1(4,6,6)=0.5D0*F1(2,5,6)

F1(5,2,1)=0.5D0*F1(2,5,1)
F1(5,2,4)=0.5D0*F1(2,5,4)
F1(5,2,5)=0.5D0*F1(2,5,5)
F1(5,2,6)=0.5D0*F1(2,5,6)

F1(5,3,1)=F1(5,2,1)
F1(5,3,4)=F1(5,2,4)
Fi(5,3,5)=F1(5,2,5)
F1(5,3,6)=F1(5,2,6)

F1(5,4,2)=0.5D0*F1(1,6,2)
F1(5,4,4)=0.5D0%F1(1,6,4)
F1(5,4,5)=0.5D0%F1(1,6,5)
F1(5,4,6)=0.5D0*F1(1,6,6)

F1(5,5,1)=-P3-P2
F1(5,5,2)=-P1
F1(5,5,3)=-P1
F1(5,5,4)=-2.DO*PHI (4)
F1(5,5,6)=-2.DO*PHI (6)

F1(5,6,3)=0.5D0*F1(1,4,3)
F1(5,6,4)=0.5D0*F1(1,4,4)
F1(5,6,5)=0.5D0*F1(1,4,5)
F1(5,6,6)=0.5D0%F1(1,4,6)

F1(6,1,2)=F1(5,4,2)
F1(6,1,4)=F1(5,4,4)
F1(6,1,5)=F1(5,4,5)
F1(6,1,6)=F1(5,4,6)

F1(6,3,2)=F1(6,1,2)
F1(6,3,4)=F1(6,1,4)
F1(6,3,5)=F1(6,1,5)
F1(6,3,6)=F1(6,1,6)

F1(6,4,1)=F1(5,2,1)
F1(6,4,4)=F1(5,2,4)
F1(6,4,5)=F1(5,2,5)
F1(6,4,6)=F1(5,2,6)

F1(6,5,3)=F1(5,6,3)
F1(6,5,4)=F1(5,6,4)
F1(6,5,5)=F1(5,6,5)
F1(6,5,6)=F1(5,6,6)

F1(6,6,1)=-P2
F1(6,6,2)=-P3-P1
F1(6,6,3)=-P2
F1(6,6,4)=-2.DO*PHI(4)
F1(6,6,5)=-2.DO*PHI (5)

F2(1,1,2,3)=2.D0
F2(1,1,3,2)=2.D0
F2(1,1,5,5)=-4.D0

F2(1,4,3,4)=-2.D0
F2(1,4,4,3)=-2.D0




F2(1,
F2(1,

F2(1,
F2(1,
F2(1,
F2(1,

F2(2,
F2(2,
F2(2,

F2(2,
F2(2,
F2(2,
F2(2,

F2(2,
F2(2,
F2(2,
F2(2,

4,5,6)=2.
4,6,5)=2

6,2,6
6,4,5
6,5,4
6,6,2

-2.

2%, 28
o

)
)
)
)

-2.

[~}
o

88

2,
27
2, -4.D0

~
unu

)=F2(1,4,3,4)
)=F2(1,4,4,3)
)=F2(1,4,5,6)
5)=F2(1,4,6,5)

B

o W D W
GWh O+

4
4
4

4,6
5,1,5)=-2.D0
5,4,6)=2.D0
5,5,1)=-2.D0
5,6,4)=2.D0

F2(3,5,1,5)=F2(2,5,1,5)
F2(3,5,4,6)=F2(2,5,4,6)
F2(3,5,5,1)=F2(2,5,5,1)
F2(3,5,6,4)=F2(2,5,6,4)

F2(3,6,2,6)=F2(1,6,2,6)
F2(3,6,4,5)=F2(1,6,4,5)
F2(3,6,5,4)=F2(1,6,5,4)
F2(3,6,6,2)=F2(1,6,6,2)

F2(4,1,3,4)=0.5D04F2(1,4,3,4)
F2(4,1,4,3)=0.5D0#F2(1,4,4,3)
F2(4,1,5,6)=0.5D0%F2(1,4,5,6)
F2(4,1,6,5)=0.5D04F2(1,4,6,5)
F2(4,2,3,4)=F2(4,1,3,4)
F2(4,2,4,3)=F2(4,1,4,3)
F2(4,2,5,6)=F2(4,1,5,6)
F2(4,2,6,5)=F2(4,1,6,5)
F2(4,4,1,3)=1.D0
F2(4,4,2,3)=1.D0
F2(4,4,3,1)=1.D0
F2(4,4,3,2)=1.D0
F2(4,4,5,5)=-2.D0
F2(4,4,6,6)=-2.D0
F2(4,5,2,6)=0.5D0%F2(1,6,2,6)
F2(4,5,4,5)=0.5D0+F2(1,6,4,5)
F2(4,5,5,4)=0.5D0%F2(1,6,5,4)
F2(4,5,6,2)=0.5D0+F2(1,6,6,2)
F2(4,6,1,5)=0.5D0*F2(2,5,1,5)
F2(4,6,4,6)=0.5D0*F2(2,5,4,6)
F2(4,6,5,1)=0.5D0#F2(2,5,5,1)
F2(4,6,6,4)=0.5D0*F2(2,5,6,4)

F2(5,2,1,5)=0.
F2(5,2,4,6)=0.
F2(5,2,5,1)=0.
F2(5,2,6,4)=0.

5D0*F2(2,5,1,5)
5D0*F2(2,5,4,6)
5D0*F2(2,5,5,1)
5D0*F2(2,5,6,4)

F2(5,3,1,5)=F2(5,2,1,5)
F2(5,3,4,6)=F2(5,2,4,6)
F2(5,3,5,1)=F2(5,2,5,1)
F2(5,3,6,4)=F2(5,2,6,4)
F2(5,4,2,6)=0.5D0+F2(1,6,2,6)
F2(5,4,4,5)=0.5D0%F2(1,6,4,5)
F2(5,4,5,4)=0.5D0*F2(1,6,5,4)
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F2(5,4,6,2)=0.5D0*F2(1,6,6,2)

c
F2(5,5,1,2)=1.D0
F2(5,5,1,3)=1.D0
F2(5,5,2,1)=1.D0
F2(5,5,3,1)=1.D0
F2(5,5,4,4)=-2.D0
F2(5,5,6,6)=-2.D0

c
F2(5,6,3,4)=0.5D0*F2(1,4,3,4)
F2(5,6,4,3)=0.5D0*F2(1,4,4,3)
F2(5,6,5,6)=0.5D0*F2(1,4,5,6)
F2(5,6,6,5)=0.5D0*F2(1,4,6,5)

c

c
F2(6,1,2,6)=F2(5,4,2,6)
F2(6,1,4,5)=F2(5,4,4,5)
F2(6,1,5,4)=F2(5,4,5,4)
F2(6,1,6,2)=F2(5,4,6,2)

c
F2(6,3,2,6)=F2(6,1,2,6)
F2(6,3,4,5)=F2(6,1,4,5)
F2(6,3,5,4)=F2(6,1,5,4)
F2(6,3,6,2)=F2(6,1,6,2)

c
F2(6,4,1,5)=F2(5,2,1,5)
F2(6,4,4,6)=F2(5,2,4,6)
F2(6,4,5,1)=F2(5,2,5,1)
F2(6,4,6,4)=F2(5,2,6,4)

c
F2(6,5,3,4)=F2(5,6,3,4)
F2(6,5,4,3)=F2(5,6,4,3)
F2(6,5,5,6)=F2(5,6,5,6)
F2(6,5,6,5)=F2(5,6,6,5)

c
F2(6,6,1,2)=1.D0
F2(6,6,2,1)=1.D0
F2(6,6,2,3)=1.D0
F2(6,6,3,2)=1.D0
F2(6,6,4,4)=-2.D0
F2(6,6,5,5)=-2.D0

c
DO 10 I=1,6
Do 10 J=1,6
DO 10 K=1,6
DO 10 L=1,6 )

10 XMPH2(I,J,K,L)=((F2(I,J,K,L)*G+F1(I,J ,K)*G1(L)-F1(I,J,L)*G1(K)
$-F(I1,])*G2(K,L))*GG-(F1(I,J,K)*G-F(I,J)*G1(K))#2.D0*G*G1(L))/G4
c
RETURE
EED
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